Question
upstudy study bank question image url

\( \left. \begin{array} { l } { 147 \int _ { \sqrt { 3 } } ^ { 3 } \frac { 1 } { 9 + x ^ { 2 } } d x } \\ { u ^ { 2 } = x ^ { 2 } a ^ { 2 } = 9 \quad a = 3 } \\ { u = x \quad d u = d x } \\ { = \int _ { \sqrt { 3 } } ^ { 3 } \frac { 1 } { a ^ { 2 } + u ^ { 2 } } d u = \frac { 1 } { 3 } \operatorname { Tan } ^ { - 1 } ( \frac { x } { 3 } ) + c ] _ { \sqrt { 3 } } ^ { 3 } } \\ { = \frac { 1 } { 3 } \operatorname { Tan } ^ { - 1 } ( \frac { 3 } { 3 } ) - [ \frac { 1 } { 3 } \operatorname { Tan } ^ { - 1 } ( \frac { \sqrt { 3 } } { 3 } ) ] } \\ { = \frac { 1 } { 3 } \operatorname { Tan } ^ { - 1 } ( 1 ) - [ \frac { 1 } { 3 } \cdot \operatorname { Tan } ^ { - 1 } ( \frac { \sqrt { 3 } } { 3 } ) ] } \\ { = \frac { 1 } { 3 } ( \frac { 1 \pi } { 4 } ) - [ \frac { 1 } { 3 } ( \frac { 1 } { 6 } \pi ) ] } \\ { = \frac { 1 } { 12 } \pi - [ \frac { 1 } { 18 } \pi ] } \\ { = \frac { 1 } { 12 } \pi - \frac { 1 } { 18 } \pi = \frac { 1 } { 36 } \pi } \end{array} \right. \)

Ask by Patel Gibbs. in Puerto Rico
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El valor de la integral es \( \frac{1}{36} \pi \).

Solution

Para encontrar el valor de la integral dada, primero sustituimos los valores de \(u\) y \(du\) en la integral y luego evaluamos los límites de integración. Dado que \(u = x\) y \(du = dx\), la integral se convierte en: \[ \int_{\sqrt{3}}^{3} \frac{1}{9 + u^2} du \] Sustituyendo \(u^2 = x^2\) y \(a^2 = 9\), la integral se simplifica a: \[ \int_{\sqrt{3}}^{3} \frac{1}{a^2 + u^2} du \] Sustituyendo \(a = 3\), la integral se convierte en: \[ \int_{\sqrt{3}}^{3} \frac{1}{3^2 + u^2} du \] Evaluando la integral, obtenemos: \[ \frac{1}{3} \arctan\left(\frac{x}{3}\right) + c \] Aplicando los límites de integración, obtenemos: \[ \frac{1}{3} \arctan\left(\frac{3}{3}\right) - \frac{1}{3} \arctan\left(\frac{\sqrt{3}}{3}\right) \] Simplificando, obtenemos: \[ \frac{1}{3} \arctan(1) - \frac{1}{3} \arctan\left(\frac{\sqrt{3}}{3}\right) \] Evaluando los arctangentes, obtenemos: \[ \frac{1}{3} \cdot \frac{\pi}{4} - \frac{1}{3} \cdot \frac{1}{6} \pi \] Simplificando, obtenemos: \[ \frac{1}{12} \pi - \frac{1}{18} \pi \] Finalmente, obtenemos: \[ \frac{1}{36} \pi \] Por lo tanto, el valor de la integral dada es \(\frac{1}{36} \pi\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Did you know that the integral you are solving, particularly one involving functions like \( \frac{1}{a^2 + u^2} \), is often connected to real-world applications in fields like physics and engineering? For instance, calculating areas under curves can help in understanding dynamics of systems, such as the motion of projectiles or the behavior of electrical circuits in alternating current (AC). When solving integrals like \( \int \frac{1}{a^2 + u^2} \, du \), one common mistake is neglecting to adjust the limits of integration after making a substitution. Always remember to change your limits based on the substitution you’ve made, ensuring that they reflect the values of the new variable correctly. It’s a small step, but it can save you from getting the wrong answer in the end!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy