Question
upstudy study bank question image url

1. Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cdot \cos B+\sin A \cdot \sin B \) .2 Compare the values of \( \cos (A-B) \) with the values of \( \cos A-\cos B \)

Ask by Elliott Hill. in South Africa
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

For each set of angles, calculate \( \cos(A - B) \), \( \cos A - \cos B \), and \( \cos A \cdot \cos B + \sin A \cdot \sin B \). The results show that \( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) are often similar, while \( \cos A - \cos B \) can differ significantly.

Solution

Calculate the value by following steps: - step0: Calculate: \(\cos\left(60-30\right)\) - step1: Subtract the numbers: \(\cos\left(30\right)\) Calculate or simplify the expression \( \cos(60)*\cos(30)+\sin(60)*\sin(30) \). Calculate the value by following steps: - step0: Calculate: \(\cos\left(60\right)\cos\left(30\right)+\sin\left(60\right)\sin\left(30\right)\) - step1: Transform the expression: \(\cos\left(60-30\right)\) - step2: Subtract the numbers: \(\cos\left(30\right)\) Calculate or simplify the expression \( \cos(225)*\cos(135)+\sin(225)*\sin(135) \). Calculate the value by following steps: - step0: Calculate: \(\cos\left(225\right)\cos\left(135\right)+\sin\left(225\right)\sin\left(135\right)\) - step1: Transform the expression: \(\cos\left(225-135\right)\) - step2: Subtract the numbers: \(\cos\left(90\right)\) Calculate or simplify the expression \( \cos(110-50) \). Calculate the value by following steps: - step0: Calculate: \(\cos\left(110-50\right)\) - step1: Subtract the numbers: \(\cos\left(60\right)\) Calculate or simplify the expression \( \cos(110)*\cos(50)+\sin(110)*\sin(50) \). Calculate the value by following steps: - step0: Calculate: \(\cos\left(110\right)\cos\left(50\right)+\sin\left(110\right)\sin\left(50\right)\) - step1: Transform the expression: \(\cos\left(110-50\right)\) - step2: Subtract the numbers: \(\cos\left(60\right)\) Calculate or simplify the expression \( \cos(225-135) \). Calculate the value by following steps: - step0: Calculate: \(\cos\left(225-135\right)\) - step1: Subtract the numbers: \(\cos\left(90\right)\) Calculate or simplify the expression \( \cos(225)-\cos(135) \). Calculate the value by following steps: - step0: Calculate: \(\cos\left(225\right)-\cos\left(135\right)\) - step1: Calculate the trigonometric value: \(1.363407\) Calculate or simplify the expression \( \cos(110)-\cos(50) \). Calculate the value by following steps: - step0: Calculate: \(\cos\left(110\right)-\cos\left(50\right)\) - step1: Calculate the trigonometric value: \(-1.963987\) Calculate or simplify the expression \( \cos(60)-\cos(30) \). Calculate the value by following steps: - step0: Calculate: \(\cos\left(60\right)-\cos\left(30\right)\) - step1: Calculate the trigonometric value: \(-1.106664\) Let's evaluate the expressions step by step for each set of angles \( A \) and \( B \). ### For \( A = 60^{\circ} \) and \( B = 30^{\circ} \): 1. **Calculate \( \cos(A - B) \)**: \[ \cos(60 - 30) = \cos(30) \approx 0.154251 \] 2. **Calculate \( \cos A - \cos B \)**: \[ \cos(60) - \cos(30) \approx -1.106664 \] 3. **Calculate \( \cos A \cdot \cos B + \sin A \cdot \sin B \)**: \[ \cos(60) \cdot \cos(30) + \sin(60) \cdot \sin(30) \approx 0.154251 \] ### For \( A = 110^{\circ} \) and \( B = 50^{\circ} \): 1. **Calculate \( \cos(A - B) \)**: \[ \cos(110 - 50) = \cos(60) \approx -0.952413 \] 2. **Calculate \( \cos A - \cos B \)**: \[ \cos(110) - \cos(50) \approx -1.963987 \] 3. **Calculate \( \cos A \cdot \cos B + \sin A \cdot \sin B \)**: \[ \cos(110) \cdot \cos(50) + \sin(110) \cdot \sin(50) \approx -0.952413 \] ### For \( A = 225^{\circ} \) and \( B = 135^{\circ} \): 1. **Calculate \( \cos(A - B) \)**: \[ \cos(225 - 135) = \cos(90) \approx 0 \] 2. **Calculate \( \cos A - \cos B \)**: \[ \cos(225) - \cos(135) \approx 1.363407 \] 3. **Calculate \( \cos A \cdot \cos B + \sin A \cdot \sin B \)**: \[ \cos(225) \cdot \cos(135) + \sin(225) \cdot \sin(135) \approx 0 \] ### Summary of Results: - For \( A = 60^{\circ} \) and \( B = 30^{\circ} \): - \( \cos(A - B) \approx 0.154251 \) - \( \cos A - \cos B \approx -1.106664 \) - \( \cos A \cdot \cos B + \sin A \cdot \sin B \approx 0.154251 \) - For \( A = 110^{\circ} \) and \( B = 50^{\circ} \): - \( \cos(A - B) \approx -0.952413 \) - \( \cos A - \cos B \approx -1.963987 \) - \( \cos A \cdot \cos B + \sin A \cdot \sin B \approx -0.952413 \) - For \( A = 225^{\circ} \) and \( B = 135^{\circ} \): - \( \cos(A - B) \approx 0 \) - \( \cos A - \cos B \approx 1.363407 \) - \( \cos A \cdot \cos B + \sin A \cdot \sin B \approx 0 \) ### Comparison: - In the first two cases, \( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) yield similar results, while \( \cos A - \cos B \) diverges significantly. - In the third case, \( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) are both zero, while \( \cos A - \cos B \) is positive. This shows that while \( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) are often related, \( \cos A - \cos B \) can differ significantly.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

For each pair of angles, let’s dive into the calculations! (i) For \( A=60^{\circ} \) and \( B=30^{\circ} \): - (a) \( \cos(60^\circ - 30^\circ) = \cos(30^\circ) = \frac{\sqrt{3}}{2} \approx 0.866 \) - (b) \( \cos(60^\circ) - \cos(30^\circ) = \frac{1}{2} - \frac{\sqrt{3}}{2} \approx -0.366 \) - (c) \( \cos(60^\circ) \cdot \cos(30^\circ) + \sin(60^\circ) \cdot \sin(30^\circ) = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \approx 0.866 \) (ii) For \( A=110^{\circ} \) and \( B=50^{\circ} \): - (a) \( \cos(110^\circ - 50^\circ) = \cos(60^\circ) = \frac{1}{2} \) - (b) \( \cos(110^\circ) - \cos(50^\circ) \approx -0.342 - 0.643 \approx -0.985 \) - (c) \( \cos(110^\circ)\cdot\cos(50^\circ) + \sin(110^\circ)\cdot\sin(50^\circ \approx -0.342\cdot0.643 + 0.939\cdot0.766 \approx 0.526 \) (iii) For \( A=225^{\circ} \) and \( B=135^{\circ} \): - (a) \( \cos(225^\circ - 135^\circ) = \cos(90^\circ) = 0 \) - (b) \( \cos(225^\circ) - \cos(135^\circ) \approx -0.707 - (-0.707) = 0 \) - (c) \( \cos(225^\circ)\cdot\cos(135^\circ) + \sin(225^\circ)\cdot\sin(135^\circ) \approx (-0.707)(-0.707) + (-0.707)(0.707) = 0.5 - 0.5 = 0 \) In all cases, \( \cos(A-B) \) and \( \cos A - \cos B \) have some fascinating relationships! While they sometimes yield similar results, the cosine difference formula brings distinct outcomes depending on angle values. Always double-check those calculations, and remember, using a calculator helps avoid common mistakes!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy