Question
upstudy study bank question image url

9. Si \( a b+b c+a c=0 \), determina el valor de: \[ F=\frac{(a+b+c)^{3}+3 a b c}{a^{3}+b^{3}+c^{3}} \]

Ask by Whittaker Hall. in Peru
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El valor de F es 1.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Beyond the Answer

Para resolver el problema, partimos de la igualdad dada: \[ ab + bc + ac = 0. \] Esto nos sugiere que podemos considerar \( c = -\frac{ab}{a+b} \). Sin embargo, para facilitar el análisis, simplemente utilizaremos las identidades de suma de cubos y la relación entre los términos. Sabemos que: \[ a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc). \] En nuestro caso, como \( ab + ac + bc = 0 \), se simplifica a: \[ a^3 + b^3 + c^3 = 3abc. \] Ahora examinemos el numerador \( F \): \[ F = \frac{(a+b+c)^3 + 3abc}{a^3 + b^3 + c^3}. \] Utilizando la identidad para el cubo de una suma, tenemos: \[ (a + b + c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a). \] Como también sabemos que \( a^3 + b^3 + c^3 = 3abc \), sustituimos: \[ (a+b+c)^3 = 3abc + 3(a+b)(b+c)(c+a). \] Ahora, el numerador de \( F \) se convierte en: \[ 3abc + 3abc = 6abc. \] Pasamos ahora al denominador: \[ a^3 + b^3 + c^3 = 3abc. \] Por lo tanto, sustituimos todo en \( F \): \[ F = \frac{6abc}{3abc} = 2. \] Finalmente, el valor de \( F \) es: \[ \boxed{2}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy