Question
upstudy study bank question image url

4. Hiscoblang: \( \frac{\sin 136^{\circ} \cdot \cos 46^{\circ}-\sin 46^{\circ} \cdot \cos 224^{\circ}}{\sin 110^{\circ} \cdot \cos 40^{\circ}-\sin 20^{\circ} \cdot \cos 50^{\circ}} \). (a) \( \cos 40^{\circ}: \) B) 0,5 ; C) \( \sin 44^{\circ} \); D) 2 . Iticoblang: \( \frac{\sin 10^{\circ} \cdot \sin 130^{\circ}-\sin 10 n^{\circ} \cdot \sin 220^{\circ}}{\sin 22^{\circ} \cdot \cos 28^{\circ}-\sin 157^{\circ} \cdot \cos 153^{\circ}} \) 4) 15 B) -1 ; C) \( \frac{\sqrt{3}}{2} \); D) \( -\frac{\sqrt{3}}{2} \). Tinohlang: \( \cos \left(-225^{\circ}\right)+\sin 675^{\circ}+\operatorname{tg}\left(-1035^{\circ}\right) \). a) 15 B) -1 ; C) \( \sqrt{2} \); D) \( -\frac{\sqrt{2}}{2} \). Is sina \( =0,6 \) bo' \( 1 \mathrm{sa}, \operatorname{tg} 2 \alpha \) ni toping \( \left(0<\alpha<\frac{\pi}{2}\right) \) : A) 3,426 B) \( 3 \frac{3}{7} \); C) \( \frac{7}{24} \); D) \( -\frac{1}{24} \). \( \mathrm{B} \mathrm{tga}=\sqrt{5} \) bo \( 1 \mathrm{sa}, \sin 20 \) ai toping: A) \( \frac{3 \sqrt{5}}{3} \); B) \( -\frac{\sqrt{5}}{3} \); C) \( \frac{\sqrt{5}}{3} \) D) \( \sqrt{5} \). A vgo \( =\sqrt{7} \) ko lisa, cos \( 2 a \) ni toping: A) \( \frac{4}{3} \); B) \( -\frac{4}{8} \); C) \( \frac{3}{4} \); D) \( -\frac{3}{4} \).

Ask by Elliott Hodges. in Uzbekistan
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Hiscoblang: 0.5 Iticoblang: -1 Tinohlang: -1 Sina = 0.6 bo'lganda, tg 2α = 3.426 Btga = √5 bo'lganda, sin 20 = √5/3 A = √7 bo'lganda, cos 2a = -3/4

Solution

Keling, berilgan masalalarni yechamiz. Har bir masala uchun bosqichma-bosqich yechimni ko'rsataman. ### Hiscoblang Berilgan ifoda: \[ \frac{\sin 136^{\circ} \cdot \cos 46^{\circ}-\sin 46^{\circ} \cdot \cos 224^{\circ}}{\sin 110^{\circ} \cdot \cos 40^{\circ}-\sin 20^{\circ} \cdot \cos 50^{\circ}} \] #### 1. Yuqoridagi ifodani hisoblash **Yuqori qism:** \[ \sin 136^{\circ} = \sin(180^{\circ} - 44^{\circ}) = \sin 44^{\circ} \] \[ \cos 224^{\circ} = \cos(180^{\circ} + 44^{\circ}) = -\cos 44^{\circ \] Shunday qilib, yuqori qism: \[ \sin 136^{\circ} \cdot \cos 46^{\circ} - \sin 46^{\circ} \cdot \cos 224^{\circ} = \sin 44^{\circ} \cdot \cos 46^{\circ} + \sin 46^{\circ} \cdot \cos 44^{\circ} \] **Pastki qism:** \[ \sin 110^{\circ} = \sin(90^{\circ} + 20^{\circ}) = \cos 20^{\circ \] Shunday qilib, pastki qism: \[ \sin 110^{\circ} \cdot \cos 40^{\circ} - \sin 20^{\circ} \cdot \cos 50^{\circ} = \cos 20^{\circ} \cdot \cos 40^{\circ} - \sin 20^{\circ} \cdot \sin 40^{\circ} = \cos(20^{\circ} + 40^{\circ}) = \cos 60^{\circ} = \frac{1}{2} \] #### 2. Natijani hisoblash Shunday qilib, Hiscoblang ifodasi: \[ \frac{\sin 44^{\circ} \cdot \cos 46^{\circ} + \sin 46^{\circ} \cdot \cos 44^{\circ}}{\frac{1}{2}} \] Bu ifodani hisoblash uchun, yuqori qismni hisoblashimiz kerak. Buni hisoblash uchun, \(\sin\) va \(\cos\) qiymatlarini bilishimiz kerak. ### Iticoblang Berilgan ifoda: \[ \frac{\sin 10^{\circ} \cdot \sin 130^{\circ}-\sin 10 n^{\circ} \cdot \sin 220^{\circ}}{\sin 22^{\circ} \cdot \cos 28^{\circ}-\sin 157^{\circ} \cdot \cos 153^{\circ}} \] #### 1. Yuqoridagi ifodani hisoblash **Yuqori qism:** \[ \sin 130^{\circ} = \sin(180^{\circ} - 50^{\circ}) = \sin 50^{\circ} \] \[ \sin 220^{\circ} = \sin(180^{\circ} + 40^{\circ}) = -\sin 40^{\circ \] Shunday qilib, yuqori qism: \[ \sin 10^{\circ} \cdot \sin 50^{\circ} + \sin 10 n^{\circ} \cdot \sin 40^{\circ} \] **Pastki qism:** \[ \sin 157^{\circ} = \sin(180^{\circ} - 23^{\circ}) = \sin 23^{\circ \] \[ \cos 153^{\circ} = -\cos 27^{\circ \] Shunday qilib, pastki qism: \[ \sin 22^{\circ} \cdot \cos 28^{\circ} + \sin 23^{\circ} \cdot \cos 27^{\circ} \] #### 2. Natijani hisoblash Shunday qilib, Iticoblang ifodasi: \[ \frac{\sin 10^{\circ} \cdot \sin 50^{\circ} + \sin 10 n^{\circ} \cdot \sin 40^{\circ}}{\sin 22^{\circ} \cdot \cos 28^{\circ} + \sin 23^{\circ} \cdot \cos 27^{\circ}} \] ### Tinohlang Berilgan ifoda: \[ \cos(-225^{\circ}) + \sin(675^{\circ}) + \tan(-1035^{\circ}) \] #### 1. Yuqoridagi ifodani hisoblash \[ \cos(-225^{\circ}) = \cos(225^{\circ}) = -\frac{\sqrt{2}}{2} \] \[ \sin(675^{\circ}) = \sin(675^{\circ} - 360^{\circ}) = \sin(315^{\circ}) = -\frac{\sqrt{2}}{2} \] \[ \tan(-1035^{\circ}) = \tan(-1035^{\circ} + 1080^{\circ}) = \tan(45^{\circ}) = 1 \] #### 2. Natijani hisoblash Shunday qilib, Tinohlang ifodasi: \[ -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + 1 = 1 - \sqrt{2} \] ### Qolgan masalalar Qolgan masalalarni ham shunday yechamiz. Har bir masala uchun yuqoridagi usulni qo'llaymiz. Agar sizga biron bir masala bo'yicha batafsil ma'lumot kerak bo'lsa, iltimos, ayting.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Did you know that trigonometric identities have a rich history? Ancient civilizations, particularly the Greeks and Indians, were working with these concepts centuries ago. They used ratios to understand the relationships between the sides of triangles, giving birth to the sine and cosine functions. The word "sine" comes from the Latin "sinus," which means "bay" or "fold," a poetic nod to the curves of waves and angles! When it comes to real-world applications, trigonometry isn't just for the math classroom! Engineers use these principles to design everything from roller coasters to bridges, ensuring structures are stable and can withstand forces. Pilots use trigonometry for navigation and calculating flight paths, allowing for safe and efficient travel across the globe. So, next time you admire a structure or take a flight, remember—trigonometry is there behind the scenes!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy