Question
In Exercises \( 1-12 \), factor the polynomial. \( \begin{array}{lll}\text { 1. } 5 x^{2}-5 x-30 & \text { 2. } 8 x^{2}-16 x-192 & \text { 3. } 6 x^{2}+48 x+42 \\ \text { 4. } 12 j^{2}-32 j+5 & \text { 5. } 10 w^{2}+24 w+8 & \text { 6. } 3 y^{2}+y-14 \\ \text { 7. } 12 p^{2}-7 p-10 & \text { 8. } 15 d^{2}+16 d-15 & \text { 9. } 2 x^{2}+17 x-9 \\ \text { 10. }-9 v^{2}-22 v-8 & \text { 11. }-14 m^{2}+13 m-3 & \text { 12. }-20 q^{2}+56 q-15\end{array} \)
Ask by Nguyen Summers. in the United States
Feb 26,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
Here are the factored forms of the polynomials:
1. \( 5x^{2}-5x-30 = 5(x-3)(x+2) \)
2. \( 8x^{2}-16x-192 = 8(x-6)(x+4) \)
3. \( 6x^{2}+48x+42 = 6(x+1)(x+7) \)
4. \( 12j^{2}-32j+5 = (2j-5)(6j-1) \)
5. \( 10w^{2}+24w+8 = 2(w+2)(5w+2) \)
6. \( 3y^{2}+y-14 = (y-2)(3y+7) \)
7. \( 12p^{2}-7p-10 = (3p+2)(4p-5) \)
8. \( 15d^{2}+16d-15 = (3d+5)(5d-3) \)
9. \( 2x^{2}+17x-9 = (x+9)(2x-1) \)
10. \( -9v^{2}-22v-8 = -(v+2)(9v+4) \)
11. \( -14m^{2}+13m-3 = -(2m-1)(7m-3) \)
12. \( -20q^{2}+56q-15 = -(2q-5)(10q-3) \)
Solution
Factor the expression by following steps:
- step0: Factor:
\(-20q^{2}+56q-15\)
- step1: Rewrite the expression:
\(-20q^{2}+\left(6+50\right)q-15\)
- step2: Calculate:
\(-20q^{2}+6q+50q-15\)
- step3: Rewrite the expression:
\(-2q\times 10q+2q\times 3+5\times 10q-5\times 3\)
- step4: Factor the expression:
\(-2q\left(10q-3\right)+5\left(10q-3\right)\)
- step5: Factor the expression:
\(\left(-2q+5\right)\left(10q-3\right)\)
- step6: Factor the expression:
\(-\left(2q-5\right)\left(10q-3\right)\)
Factor the expression \( 3y^{2}+y-14 \).
Factor the expression by following steps:
- step0: Factor:
\(3y^{2}+y-14\)
- step1: Rewrite the expression:
\(3y^{2}+\left(7-6\right)y-14\)
- step2: Calculate:
\(3y^{2}+7y-6y-14\)
- step3: Rewrite the expression:
\(y\times 3y+y\times 7-2\times 3y-2\times 7\)
- step4: Factor the expression:
\(y\left(3y+7\right)-2\left(3y+7\right)\)
- step5: Factor the expression:
\(\left(y-2\right)\left(3y+7\right)\)
Factor the expression \( 2x^{2}+17x-9 \).
Factor the expression by following steps:
- step0: Factor:
\(2x^{2}+17x-9\)
- step1: Rewrite the expression:
\(2x^{2}+\left(-1+18\right)x-9\)
- step2: Calculate:
\(2x^{2}-x+18x-9\)
- step3: Rewrite the expression:
\(x\times 2x-x+9\times 2x-9\)
- step4: Factor the expression:
\(x\left(2x-1\right)+9\left(2x-1\right)\)
- step5: Factor the expression:
\(\left(x+9\right)\left(2x-1\right)\)
Factor the expression \( 12p^{2}-7p-10 \).
Factor the expression by following steps:
- step0: Factor:
\(12p^{2}-7p-10\)
- step1: Rewrite the expression:
\(12p^{2}+\left(-15+8\right)p-10\)
- step2: Calculate:
\(12p^{2}-15p+8p-10\)
- step3: Rewrite the expression:
\(3p\times 4p-3p\times 5+2\times 4p-2\times 5\)
- step4: Factor the expression:
\(3p\left(4p-5\right)+2\left(4p-5\right)\)
- step5: Factor the expression:
\(\left(3p+2\right)\left(4p-5\right)\)
Factor the expression \( 6x^{2}+48x+42 \).
Factor the expression by following steps:
- step0: Factor:
\(6x^{2}+48x+42\)
- step1: Rewrite the expression:
\(6x^{2}+6\times 8x+6\times 7\)
- step2: Factor the expression:
\(6\left(x^{2}+8x+7\right)\)
- step3: Factor the expression:
\(6\left(x+1\right)\left(x+7\right)\)
Factor the expression \( 5x^{2}-5x-30 \).
Factor the expression by following steps:
- step0: Factor:
\(5x^{2}-5x-30\)
- step1: Rewrite the expression:
\(5x^{2}-5x-5\times 6\)
- step2: Factor the expression:
\(5\left(x^{2}-x-6\right)\)
- step3: Factor the expression:
\(5\left(x-3\right)\left(x+2\right)\)
Factor the expression \( 8x^{2}-16x-192 \).
Factor the expression by following steps:
- step0: Factor:
\(8x^{2}-16x-192\)
- step1: Rewrite the expression:
\(8x^{2}-8\times 2x-8\times 24\)
- step2: Factor the expression:
\(8\left(x^{2}-2x-24\right)\)
- step3: Factor the expression:
\(8\left(x-6\right)\left(x+4\right)\)
Factor the expression \( -9v^{2}-22v-8 \).
Factor the expression by following steps:
- step0: Factor:
\(-9v^{2}-22v-8\)
- step1: Factor the expression:
\(-\left(9v^{2}+22v+8\right)\)
- step2: Factor the expression:
\(-\left(v+2\right)\left(9v+4\right)\)
Factor the expression \( -14m^{2}+13m-3 \).
Factor the expression by following steps:
- step0: Factor:
\(-14m^{2}+13m-3\)
- step1: Rewrite the expression:
\(-14m^{2}+\left(6+7\right)m-3\)
- step2: Calculate:
\(-14m^{2}+6m+7m-3\)
- step3: Rewrite the expression:
\(-2m\times 7m+2m\times 3+7m-3\)
- step4: Factor the expression:
\(-2m\left(7m-3\right)+7m-3\)
- step5: Factor the expression:
\(\left(-2m+1\right)\left(7m-3\right)\)
- step6: Factor the expression:
\(-\left(2m-1\right)\left(7m-3\right)\)
Factor the expression \( 12j^{2}-32j+5 \).
Factor the expression by following steps:
- step0: Factor:
\(12j^{2}-32j+5\)
- step1: Rewrite the expression:
\(12j^{2}+\left(-2-30\right)j+5\)
- step2: Calculate:
\(12j^{2}-2j-30j+5\)
- step3: Rewrite the expression:
\(2j\times 6j-2j-5\times 6j+5\)
- step4: Factor the expression:
\(2j\left(6j-1\right)-5\left(6j-1\right)\)
- step5: Factor the expression:
\(\left(2j-5\right)\left(6j-1\right)\)
Factor the expression \( 15d^{2}+16d-15 \).
Factor the expression by following steps:
- step0: Factor:
\(15d^{2}+16d-15\)
- step1: Rewrite the expression:
\(15d^{2}+\left(-9+25\right)d-15\)
- step2: Calculate:
\(15d^{2}-9d+25d-15\)
- step3: Rewrite the expression:
\(3d\times 5d-3d\times 3+5\times 5d-5\times 3\)
- step4: Factor the expression:
\(3d\left(5d-3\right)+5\left(5d-3\right)\)
- step5: Factor the expression:
\(\left(3d+5\right)\left(5d-3\right)\)
Factor the expression \( 10w^{2}+24w+8 \).
Factor the expression by following steps:
- step0: Factor:
\(10w^{2}+24w+8\)
- step1: Rewrite the expression:
\(2\times 5w^{2}+2\times 12w+2\times 4\)
- step2: Factor the expression:
\(2\left(5w^{2}+12w+4\right)\)
- step3: Factor the expression:
\(2\left(w+2\right)\left(5w+2\right)\)
Here are the factored forms of the given polynomials:
1. \( 5x^{2}-5x-30 = 5(x-3)(x+2) \)
2. \( 8x^{2}-16x-192 = 8(x-6)(x+4) \)
3. \( 6x^{2}+48x+42 = 6(x+1)(x+7) \)
4. \( 12j^{2}-32j+5 = (2j-5)(6j-1) \)
5. \( 10w^{2}+24w+8 = 2(w+2)(5w+2) \)
6. \( 3y^{2}+y-14 = (y-2)(3y+7) \)
7. \( 12p^{2}-7p-10 = (3p+2)(4p-5) \)
8. \( 15d^{2}+16d-15 = (3d+5)(5d-3) \)
9. \( 2x^{2}+17x-9 = (x+9)(2x-1) \)
10. \( -9v^{2}-22v-8 = -(v+2)(9v+4) \)
11. \( -14m^{2}+13m-3 = -(2m-1)(7m-3) \)
12. \( -20q^{2}+56q-15 = -(2q-5)(10q-3) \)
If you need further assistance or explanations on any specific polynomial, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Extra Insights
First, let's break down our polynomials into their factored forms, adding some flair to our mathematical adventure! For \(5x^{2}-5x-30\), we can factor out a common factor of 5 first, yielding \(5(x^{2}-x-6)\). Now, factoring \(x^{2}-x-6\) gives us \(5(x-3)(x+2)\). Voilà! Moving on to \(8x^{2}-16x-192\), we can start by factor out an 8, leading us to \(8(x^{2}-2x-24)\). Next, factoring \(x^{2}-2x-24\) gives us \((x-6)(x+4)\), and thus we arrive at \(8(x-6)(x+4)\). Isn't factoring these polynomials just delightful? Let's keep rolling with the next fit!