Question
upstudy study bank question image url

In Exercises \( 1-12 \), factor the polynomial. \( \begin{array}{lll}\text { 1. } 5 x^{2}-5 x-30 & \text { 2. } 8 x^{2}-16 x-192 & \text { 3. } 6 x^{2}+48 x+42 \\ \text { 4. } 12 j^{2}-32 j+5 & \text { 5. } 10 w^{2}+24 w+8 & \text { 6. } 3 y^{2}+y-14 \\ \text { 7. } 12 p^{2}-7 p-10 & \text { 8. } 15 d^{2}+16 d-15 & \text { 9. } 2 x^{2}+17 x-9 \\ \text { 10. }-9 v^{2}-22 v-8 & \text { 11. }-14 m^{2}+13 m-3 & \text { 12. }-20 q^{2}+56 q-15\end{array} \)

Ask by Nguyen Summers. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the factored forms of the polynomials: 1. \( 5x^{2}-5x-30 = 5(x-3)(x+2) \) 2. \( 8x^{2}-16x-192 = 8(x-6)(x+4) \) 3. \( 6x^{2}+48x+42 = 6(x+1)(x+7) \) 4. \( 12j^{2}-32j+5 = (2j-5)(6j-1) \) 5. \( 10w^{2}+24w+8 = 2(w+2)(5w+2) \) 6. \( 3y^{2}+y-14 = (y-2)(3y+7) \) 7. \( 12p^{2}-7p-10 = (3p+2)(4p-5) \) 8. \( 15d^{2}+16d-15 = (3d+5)(5d-3) \) 9. \( 2x^{2}+17x-9 = (x+9)(2x-1) \) 10. \( -9v^{2}-22v-8 = -(v+2)(9v+4) \) 11. \( -14m^{2}+13m-3 = -(2m-1)(7m-3) \) 12. \( -20q^{2}+56q-15 = -(2q-5)(10q-3) \)

Solution

Factor the expression by following steps: - step0: Factor: \(-20q^{2}+56q-15\) - step1: Rewrite the expression: \(-20q^{2}+\left(6+50\right)q-15\) - step2: Calculate: \(-20q^{2}+6q+50q-15\) - step3: Rewrite the expression: \(-2q\times 10q+2q\times 3+5\times 10q-5\times 3\) - step4: Factor the expression: \(-2q\left(10q-3\right)+5\left(10q-3\right)\) - step5: Factor the expression: \(\left(-2q+5\right)\left(10q-3\right)\) - step6: Factor the expression: \(-\left(2q-5\right)\left(10q-3\right)\) Factor the expression \( 3y^{2}+y-14 \). Factor the expression by following steps: - step0: Factor: \(3y^{2}+y-14\) - step1: Rewrite the expression: \(3y^{2}+\left(7-6\right)y-14\) - step2: Calculate: \(3y^{2}+7y-6y-14\) - step3: Rewrite the expression: \(y\times 3y+y\times 7-2\times 3y-2\times 7\) - step4: Factor the expression: \(y\left(3y+7\right)-2\left(3y+7\right)\) - step5: Factor the expression: \(\left(y-2\right)\left(3y+7\right)\) Factor the expression \( 2x^{2}+17x-9 \). Factor the expression by following steps: - step0: Factor: \(2x^{2}+17x-9\) - step1: Rewrite the expression: \(2x^{2}+\left(-1+18\right)x-9\) - step2: Calculate: \(2x^{2}-x+18x-9\) - step3: Rewrite the expression: \(x\times 2x-x+9\times 2x-9\) - step4: Factor the expression: \(x\left(2x-1\right)+9\left(2x-1\right)\) - step5: Factor the expression: \(\left(x+9\right)\left(2x-1\right)\) Factor the expression \( 12p^{2}-7p-10 \). Factor the expression by following steps: - step0: Factor: \(12p^{2}-7p-10\) - step1: Rewrite the expression: \(12p^{2}+\left(-15+8\right)p-10\) - step2: Calculate: \(12p^{2}-15p+8p-10\) - step3: Rewrite the expression: \(3p\times 4p-3p\times 5+2\times 4p-2\times 5\) - step4: Factor the expression: \(3p\left(4p-5\right)+2\left(4p-5\right)\) - step5: Factor the expression: \(\left(3p+2\right)\left(4p-5\right)\) Factor the expression \( 6x^{2}+48x+42 \). Factor the expression by following steps: - step0: Factor: \(6x^{2}+48x+42\) - step1: Rewrite the expression: \(6x^{2}+6\times 8x+6\times 7\) - step2: Factor the expression: \(6\left(x^{2}+8x+7\right)\) - step3: Factor the expression: \(6\left(x+1\right)\left(x+7\right)\) Factor the expression \( 5x^{2}-5x-30 \). Factor the expression by following steps: - step0: Factor: \(5x^{2}-5x-30\) - step1: Rewrite the expression: \(5x^{2}-5x-5\times 6\) - step2: Factor the expression: \(5\left(x^{2}-x-6\right)\) - step3: Factor the expression: \(5\left(x-3\right)\left(x+2\right)\) Factor the expression \( 8x^{2}-16x-192 \). Factor the expression by following steps: - step0: Factor: \(8x^{2}-16x-192\) - step1: Rewrite the expression: \(8x^{2}-8\times 2x-8\times 24\) - step2: Factor the expression: \(8\left(x^{2}-2x-24\right)\) - step3: Factor the expression: \(8\left(x-6\right)\left(x+4\right)\) Factor the expression \( -9v^{2}-22v-8 \). Factor the expression by following steps: - step0: Factor: \(-9v^{2}-22v-8\) - step1: Factor the expression: \(-\left(9v^{2}+22v+8\right)\) - step2: Factor the expression: \(-\left(v+2\right)\left(9v+4\right)\) Factor the expression \( -14m^{2}+13m-3 \). Factor the expression by following steps: - step0: Factor: \(-14m^{2}+13m-3\) - step1: Rewrite the expression: \(-14m^{2}+\left(6+7\right)m-3\) - step2: Calculate: \(-14m^{2}+6m+7m-3\) - step3: Rewrite the expression: \(-2m\times 7m+2m\times 3+7m-3\) - step4: Factor the expression: \(-2m\left(7m-3\right)+7m-3\) - step5: Factor the expression: \(\left(-2m+1\right)\left(7m-3\right)\) - step6: Factor the expression: \(-\left(2m-1\right)\left(7m-3\right)\) Factor the expression \( 12j^{2}-32j+5 \). Factor the expression by following steps: - step0: Factor: \(12j^{2}-32j+5\) - step1: Rewrite the expression: \(12j^{2}+\left(-2-30\right)j+5\) - step2: Calculate: \(12j^{2}-2j-30j+5\) - step3: Rewrite the expression: \(2j\times 6j-2j-5\times 6j+5\) - step4: Factor the expression: \(2j\left(6j-1\right)-5\left(6j-1\right)\) - step5: Factor the expression: \(\left(2j-5\right)\left(6j-1\right)\) Factor the expression \( 15d^{2}+16d-15 \). Factor the expression by following steps: - step0: Factor: \(15d^{2}+16d-15\) - step1: Rewrite the expression: \(15d^{2}+\left(-9+25\right)d-15\) - step2: Calculate: \(15d^{2}-9d+25d-15\) - step3: Rewrite the expression: \(3d\times 5d-3d\times 3+5\times 5d-5\times 3\) - step4: Factor the expression: \(3d\left(5d-3\right)+5\left(5d-3\right)\) - step5: Factor the expression: \(\left(3d+5\right)\left(5d-3\right)\) Factor the expression \( 10w^{2}+24w+8 \). Factor the expression by following steps: - step0: Factor: \(10w^{2}+24w+8\) - step1: Rewrite the expression: \(2\times 5w^{2}+2\times 12w+2\times 4\) - step2: Factor the expression: \(2\left(5w^{2}+12w+4\right)\) - step3: Factor the expression: \(2\left(w+2\right)\left(5w+2\right)\) Here are the factored forms of the given polynomials: 1. \( 5x^{2}-5x-30 = 5(x-3)(x+2) \) 2. \( 8x^{2}-16x-192 = 8(x-6)(x+4) \) 3. \( 6x^{2}+48x+42 = 6(x+1)(x+7) \) 4. \( 12j^{2}-32j+5 = (2j-5)(6j-1) \) 5. \( 10w^{2}+24w+8 = 2(w+2)(5w+2) \) 6. \( 3y^{2}+y-14 = (y-2)(3y+7) \) 7. \( 12p^{2}-7p-10 = (3p+2)(4p-5) \) 8. \( 15d^{2}+16d-15 = (3d+5)(5d-3) \) 9. \( 2x^{2}+17x-9 = (x+9)(2x-1) \) 10. \( -9v^{2}-22v-8 = -(v+2)(9v+4) \) 11. \( -14m^{2}+13m-3 = -(2m-1)(7m-3) \) 12. \( -20q^{2}+56q-15 = -(2q-5)(10q-3) \) If you need further assistance or explanations on any specific polynomial, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

First, let's break down our polynomials into their factored forms, adding some flair to our mathematical adventure! For \(5x^{2}-5x-30\), we can factor out a common factor of 5 first, yielding \(5(x^{2}-x-6)\). Now, factoring \(x^{2}-x-6\) gives us \(5(x-3)(x+2)\). Voilà! Moving on to \(8x^{2}-16x-192\), we can start by factor out an 8, leading us to \(8(x^{2}-2x-24)\). Next, factoring \(x^{2}-2x-24\) gives us \((x-6)(x+4)\), and thus we arrive at \(8(x-6)(x+4)\). Isn't factoring these polynomials just delightful? Let's keep rolling with the next fit!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy