Question
upstudy study bank question image url

\( \left. \begin{array} { l } { 137 \frac { x - 2 } { ( x + 1 ) ^ { 2 } + 4 } d x } \\ { u ^ { 2 } = ( x + 1 ) ^ { 2 } \quad a ^ { 2 } = 4 \quad a = 2 \quad d u = d x } \\ { u = x + 1 \quad x = u - 1 } \\ { \int \frac { u - 1 - 2 } { u ^ { 2 } + 14 } d x } \\ { \int \frac { u } { u ^ { 2 } + 4 } d u + \int \frac { - 3 } { u ^ { 2 } + a ^ { 2 } } d u } \\ { \frac { 1 } { 2 } \ln | ( x + 1 ) ^ { 2 } + 4 | + c - 3 \int \frac { 1 } { a ^ { 2 } + u ^ { 2 } } d u } \\ { \frac { 1 } { 2 } \ln | ( x + 1 ) ^ { 2 } + 4 | - 3 ( \frac { 1 } { 2 } ) \operatorname { Tan } ^ { - 1 } ( \frac { x + 1 } { 2 } ) + c } \\ { \frac { 1 } { 2 } \ln | ( x + 1 ) ^ { 2 } + 4 | - \frac { 3 } { 2 } \operatorname { Tan } ^ { - 1 } ( \frac { x + 1 } { 2 } ) + c / 1 } \end{array} \right. \)

Ask by Donnelly Davey. in Puerto Rico
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral se resuelve utilizando sustitución y se obtiene: \[ \frac{1}{2} \ln |(x + 1)^2 + 4| - \frac{3}{2} \arctan\left(\frac{x + 1}{2}\right) + C \]

Solution

Se tiene la integral   ∫ (x – 2)/[(x + 1)² + 4] dx. Para resolverla, se realizó el siguiente procedimiento: 1. Se usa el cambio de variable u = x + 1, de donde se tiene du = dx y además x = u – 1. 2. Al sustituir en la integral, el numerador queda:   x – 2 = (u – 1) – 2 = u – 3, y el denominador se transforma en u² + 4. Así, la integral se reescribe como   ∫ (u – 3)/(u² + 4) du. 3. Se separa esta integral en dos partes:   ∫ u/(u² + 4) du – 3 ∫ 1/(u² + 4) du. 4. Para el primer término, se utiliza la sustitución w = u² + 4, con dw = 2u du, lo que lleva a   ∫ u/(u² + 4) du = (1/2) ∫ dw/w = (1/2) ln|w| + C = (1/2) ln|u² + 4| + C. 5. Para el segundo término se reconoce la integral estándar   ∫ du/(u² + a²) = (1/a) tan⁻¹(u/a) + C, con a² = 4, entonces a = 2. Se tiene   ∫ du/(u² + 4) = (1/2) tan⁻¹(u/2) + C, y por lo tanto   – 3 ∫ du/(u² + 4) = – (3/2) tan⁻¹(u/2) + C. 6. Regresando a la variable original (recordando que u = x + 1), se obtiene la solución general:   (1/2) ln|(x + 1)² + 4| – (3/2) tan⁻¹((x + 1)/2) + C. Este es el resultado final de la integración.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that the integration techniques you just used trace back to the ancient Greeks? Mathematicians like Archimedes made significant strides in calculating areas and volumes, laying the foundation for integral calculus. This historical context reflects the legendary rigor with which early mathematicians approached problems, often using geometric interpretations long before modern symbols and methods were established. In the real world, understanding these integration techniques can help in fields like physics or engineering, where calculating areas under curves represents quantities like distance, work, or energy. For instance, when analyzing a projectile's motion or the forces acting on a structure, integrating relevant equations lets engineers predict outcomes effectively, making mathematics not just theoretical but a powerful tool for problem-solving in everyday life.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy