Question
upstudy study bank question image url

3. Vind die waarde van \( t \) deur inspeksie \( \begin{array}{llll}\text { a.) } \frac{2}{3}=\frac{t}{12} & \text { b.) } \frac{7}{5}=\frac{t}{20} & \text { c.) } \frac{t}{7}=\frac{7}{28} & \text { d.) } \frac{t}{5}=\frac{3}{25}\end{array} \)

Ask by Nichols Lang. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The values of \( t \) are: a.) \( t = 8 \) b.) \( t = 28 \) c.) \( t = 1.75 \) d.) \( t = 0.6 \)

Solution

Solve the equation by following steps: - step0: Solve for \(t\): \(\frac{7}{5}=\frac{t}{20}\) - step1: Swap the sides: \(\frac{t}{20}=\frac{7}{5}\) - step2: Multiply both sides of the equation by \(20:\) \(\frac{t}{20}\times 20=\frac{7}{5}\times 20\) - step3: Multiply the terms: \(t=\frac{7\times 20}{5}\) - step4: Divide the terms: \(t=28\) Solve the equation \( \frac{t}{7}=\frac{7}{28} \). Solve the equation by following steps: - step0: Solve for \(t\): \(\frac{t}{7}=\frac{7}{28}\) - step1: Reduce the fraction: \(\frac{t}{7}=\frac{1}{4}\) - step2: Multiply both sides of the equation by \(7:\) \(\frac{t}{7}\times 7=\frac{1}{4}\times 7\) - step3: Multiply the terms: \(t=\frac{7}{4}\) Solve the equation \( \frac{t}{5}=\frac{3}{25} \). Solve the equation by following steps: - step0: Solve for \(t\): \(\frac{t}{5}=\frac{3}{25}\) - step1: Multiply both sides of the equation by \(5:\) \(\frac{t}{5}\times 5=\frac{3}{25}\times 5\) - step2: Multiply the terms: \(t=\frac{3\times 5}{25}\) - step3: Divide the terms: \(t=\frac{3}{5}\) Solve the equation \( \frac{2}{3}=\frac{t}{12} \). Solve the equation by following steps: - step0: Solve for \(t\): \(\frac{2}{3}=\frac{t}{12}\) - step1: Swap the sides: \(\frac{t}{12}=\frac{2}{3}\) - step2: Multiply both sides of the equation by \(12:\) \(\frac{t}{12}\times 12=\frac{2}{3}\times 12\) - step3: Multiply the terms: \(t=\frac{2\times 12}{3}\) - step4: Divide the terms: \(t=8\) Hier is die waarde van \( t \) vir elke vergelyking: a.) Vir die vergelyking \( \frac{2}{3} = \frac{t}{12} \): \[ t = 8 \] b.) Vir die vergelyking \( \frac{7}{5} = \frac{t}{20} \): \[ t = 28 \] c.) Vir die vergelyking \( \frac{t}{7} = \frac{7}{28} \): \[ t = \frac{7}{4} \quad \text{of} \quad t = 1.75 \] d.) Vir die vergelyking \( \frac{t}{5} = \frac{3}{25} \): \[ t = \frac{3}{5} \quad \text{of} \quad t = 0.6 \] As jy enige verdere vrae het, laat weet my!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Om die waarde van \( t \) deur inspeksie te vind, kan ons eenvoudig die verhouding aanpas en die waarde van \( t \) vind deur die breuke met mekaar te vergelyk. a.) Ons weet dat \( \frac{2}{3}=\frac{t}{12} \). Om \( t \) te vind, kan ons dit oorskakel as \( t = \frac{2}{3} \times 12 \). Dit beteken \( t = 8 \). b.) In die geval van \( \frac{7}{5}=\frac{t}{20} \), kan ons dieselfde metode toepas. Hier is \( t = \frac{7}{5} \times 20 \), wat beteken \( t = 28 \). c.) Vir \( \frac{t}{7}=\frac{7}{28} \), kan ons dit eenvoudig vereenvoudig. Aangesien \( \frac{7}{28} = \frac{1}{4} \), kry ons \( t = 7 \times \frac{1}{4} = \frac{7}{4} \) of 1.75. d.) Laastens, vir \( \frac{t}{5}=\frac{3}{25} \), kan ons met \( t = \frac{3}{25} \times 5 \) aan die gemoed kom, wat \( t = \frac{3}{5} \) of 0.6 gee. Dus, die waardes van \( t \) is: a) 8, b) 28, c) 1.75, d) 0.6.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy