Question
(g) \( x+2 y=0 \quad \) and \( y-x y=\frac{1}{2} x^{2}-2 \) (h) \( y=\frac{-6}{x+2}-1 \) and \( y+2 x-6=0 \) (i) \( y=\frac{3}{x}+3 \quad \) and \( 3 y-x=1 \)
Ask by Tucker Pope. in South Africa
Feb 26,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
The solutions are:
- (g) \( (4, -2) \)
- (h) \( (-2.5, 11) \) and \( (4, -2) \)
- (i) \( (-1, 0) \) and \( (9, 3.\dot{3}) \)
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+2y=0\\y-xy=\frac{1}{2}x^{2}-2\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=-2y\\y-xy=\frac{1}{2}x^{2}-2\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(y-\left(-2y\times y\right)=\frac{1}{2}\left(-2y\right)^{2}-2\)
- step3: Simplify:
\(y+2y^{2}=2y^{2}-2\)
- step4: Cancel equal terms:
\(y=-2\)
- step5: Substitute the value of \(y:\)
\(x=-2\left(-2\right)\)
- step6: Calculate:
\(x=4\)
- step7: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\)
- step8: Check the solution:
\(\left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\)
- step9: Rewrite:
\(\left(x,y\right) = \left(4,-2\right)\)
Solve the system of equations \( y=\frac{3}{x}+3; 3y-x=1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=\frac{3}{x}+3\\3y-x=1\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(3\left(\frac{3}{x}+3\right)-x=1\)
- step2: Multiply the terms:
\(\frac{9+9x}{x}-x=1\)
- step3: Multiply both sides of the equation by LCD:
\(\left(\frac{9+9x}{x}-x\right)x=1\times x\)
- step4: Simplify the equation:
\(9+9x-x^{2}=x\)
- step5: Move the expression to the left side:
\(9+9x-x^{2}-x=0\)
- step6: Subtract the terms:
\(9+8x-x^{2}=0\)
- step7: Factor the expression:
\(\left(9-x\right)\left(1+x\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&9-x=0\\&1+x=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&x=9\\&x=-1\end{align}\)
- step10: Calculate:
\(x=9\cup x=-1\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=9\\y=\frac{3}{x}+3\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=\frac{3}{x}+3\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=9\\y=\frac{10}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=0\end{array}\right.\)
- step13: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=0\end{array}\right.\cup \left\{ \begin{array}{l}x=9\\y=\frac{10}{3}\end{array}\right.\)
- step14: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=0\end{array}\right.\cup \left\{ \begin{array}{l}x=9\\y=\frac{10}{3}\end{array}\right.\)
- step15: Rewrite:
\(\left(x,y\right) = \left(-1,0\right)\cup \left(x,y\right) = \left(9,\frac{10}{3}\right)\)
Solve the system of equations \( y=\frac{-6}{x+2}-1; y+2x-6=0 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=\frac{-6}{x+2}-1\\y+2x-6=0\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}y=-\frac{6}{x+2}-1\\y+2x-6=0\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(-\frac{6}{x+2}-1+2x-6=0\)
- step3: Simplify:
\(-\frac{6}{x+2}-7+2x=0\)
- step4: Multiply both sides of the equation by LCD:
\(\left(-\frac{6}{x+2}-7+2x\right)\left(x+2\right)=0\times \left(x+2\right)\)
- step5: Simplify the equation:
\(-20-3x+2x^{2}=0\)
- step6: Factor the expression:
\(\left(-4+x\right)\left(5+2x\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&-4+x=0\\&5+2x=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=4\\&x=-\frac{5}{2}\end{align}\)
- step9: Calculate:
\(x=4\cup x=-\frac{5}{2}\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=4\\y=-\frac{6}{x+2}-1\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{2}\\y=-\frac{6}{x+2}-1\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{2}\\y=11\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{5}{2}\\y=11\end{array}\right.\cup \left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{5}{2}\\y=11\end{array}\right.\cup \left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-\frac{5}{2},11\right)\cup \left(x,y\right) = \left(4,-2\right)\)
Here are the solutions for the given systems of equations:
### (g)
Equations:
1. \( x + 2y = 0 \)
2. \( y - xy = \frac{1}{2}x^2 - 2 \)
**Solution:**
The solution to this system is:
\[
(x, y) = (4, -2)
\]
### (h)
Equations:
1. \( y = \frac{-6}{x+2} - 1 \)
2. \( y + 2x - 6 = 0 \)
**Solution:**
The solutions to this system are:
\[
(x, y) = \left(-\frac{5}{2}, 11\right) \cup (x, y) = (4, -2)
\]
This means there are two pairs of solutions: one at \((-2.5, 11)\) and another at \((4, -2)\).
### (i)
Equations:
1. \( y = \frac{3}{x} + 3 \)
2. \( 3y - x = 1 \)
**Solution:**
The solutions to this system are:
\[
(x, y) = (-1, 0) \cup (x, y) = (9, \frac{10}{3})
\]
This means there are two pairs of solutions: one at \((-1, 0)\) and another at \((9, 3.\dot{3})\).
If you have any further questions or need additional assistance, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg

