Question
upstudy study bank question image url

\( \begin{array}{l} \int \frac{x^{3}+x+1}{x^{2}+1} d x \\ 0 \\ =\int \frac{x+1}{x^{2}+1} d x+\int \frac{2 x+1}{x^{2}+1} d x \\ =x+1+\frac{2 x+1}{x^{2}+1} \\ \left.\begin{array}{l} u^{2}=x^{2} \\ \begin{array}{l} u=x \\ a^{2}=1 \\ a=1 \end{array} \quad d u=d x \end{array}\right\} \int \frac{x+1}{u^{2}+a^{2}} d u+\ln \left|x^{2}+1\right|+c \\ =x+1 \int \frac{1}{u^{2}+a^{2}} d u+\operatorname{Ln}\left|x^{2}+1\right|+c \\ =x+1(1) \tan ^{-1}(x)+\ln \left|x^{2}+1\right|+c \\ =x+1 \tan ^{-1}(x)+\ln \left|x^{2}+1\right|+c_{11} \end{array} \)

Ask by Nunez Hart. in Puerto Rico
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral \( \int \frac{x^{3}+x+1}{x^{2}+1} \, dx \) se resuelve al dividir el numerador por el denominador, lo que da \( x + \frac{1}{x^{2}+1} \). Integrando cada término, obtenemos \( \frac{x^2}{2} + \tan^{-1}(x) + C \), donde \( C \) es la constante de integración.

Solution

Vamos a resolver la integral \( \int \frac{x^{3}+x+1}{x^{2}+1} \, dx \) paso a paso. 1. **Dividir la integral**: Primero, podemos dividir el numerador por el denominador para simplificar la integral. Esto se puede hacer separando los términos: \[ \int \frac{x^{3}+x+1}{x^{2}+1} \, dx = \int \left( x + \frac{1}{x^{2}+1} \right) \, dx \] Esto se obtiene al realizar la división polinómica. 2. **Integrar cada término**: Ahora, integramos cada parte por separado: \[ \int x \, dx + \int \frac{1}{x^{2}+1} \, dx \] La integral de \( x \) es: \[ \frac{x^2}{2} \] Y la integral de \( \frac{1}{x^{2}+1} \) es: \[ \tan^{-1}(x) \] Por lo tanto, la integral completa se convierte en: \[ \frac{x^2}{2} + \tan^{-1}(x) + C \] 3. **Resultado final**: Así que la solución a la integral \( \int \frac{x^{3}+x+1}{x^{2}+1} \, dx \) es: \[ \frac{x^2}{2} + \tan^{-1}(x) + C \] Donde \( C \) es la constante de integración.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Did you know that integration techniques have ancient roots? The concept of finding areas using integrals dates back to the Greeks, with mathematicians like Archimedes using geometric methods to calculate areas and volumes. The formal development of calculus eventually emerged in the 17th century, thanks to Newton and Leibniz, paving the way for modern mathematical analysis. In the real world, understanding integrals helps in various fields like physics and engineering, where you might need to calculate areas under curves to find quantities like displacement, work done, or even fluid flow rates. For example, in physics, the integral of velocity gives you displacement, making it crucial for accurately describing movement!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy