Question
upstudy study bank question image url

\( x = \frac { - 2 \pm \sqrt { 2 ^ { 2 } - 4 ( 1 ) ( - 15 ) } } { 2 ( 1 ) } \)

Ask by Mejia Gonzalez. in Ecuador
Jan 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Las soluciones de la ecuación son \( x = 3 \) y \( x = -5 \).

Solution

Calculate the value by following steps: - step0: Calculate: \(-2+\frac{\sqrt{2^{2}-4\times 1\times \left(-15\right)}}{\left(2\times 1\right)}\) - step1: Remove the parentheses: \(-2+\frac{\sqrt{2^{2}-4\times 1\times \left(-15\right)}}{2\times 1}\) - step2: Multiply the terms: \(-2+\frac{\sqrt{2^{2}+60}}{2\times 1}\) - step3: Add the numbers: \(-2+\frac{\sqrt{64}}{2\times 1}\) - step4: Simplify the root: \(-2+\frac{8}{2\times 1}\) - step5: Reduce the fraction: \(-2+4\) - step6: Add the numbers: \(2\) Calculate or simplify the expression \( -2 - \sqrt(2^2 - 4 * 1 * -15) / (2 * 1) \). Calculate the value by following steps: - step0: Calculate: \(-2-\frac{\sqrt{2^{2}-4\times 1\times \left(-15\right)}}{\left(2\times 1\right)}\) - step1: Remove the parentheses: \(-2-\frac{\sqrt{2^{2}-4\times 1\times \left(-15\right)}}{2\times 1}\) - step2: Multiply the terms: \(-2-\frac{\sqrt{2^{2}+60}}{2\times 1}\) - step3: Add the numbers: \(-2-\frac{\sqrt{64}}{2\times 1}\) - step4: Simplify the root: \(-2-\frac{8}{2\times 1}\) - step5: Reduce the fraction: \(-2-4\) - step6: Subtract the numbers: \(-6\) Para resolver la ecuación cuadrática dada: \[ x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-15)}}{2(1)} \] Primero, calculamos el discriminante: \[ 2^2 - 4(1)(-15) = 4 + 60 = 64 \] Ahora, sustituimos el discriminante en la fórmula: \[ x = \frac{-2 \pm \sqrt{64}}{2} \] Calculamos la raíz cuadrada de 64: \[ \sqrt{64} = 8 \] Ahora tenemos dos soluciones: 1. Para \( x = \frac{-2 + 8}{2} \): \[ x = \frac{6}{2} = 3 \] 2. Para \( x = \frac{-2 - 8}{2} \): \[ x = \frac{-10}{2} = -5 \] Por lo tanto, las soluciones de la ecuación son: \[ x = 3 \quad \text{y} \quad x = -5 \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Did you know that this formula is derived from the quadratic equation \( ax^2 + bx + c = 0 \)? Here, \( a = 1 \), \( b = -2 \), and \( c = -15 \). This equation is unique because it can model various real-world scenarios, like projectile motion or financial forecasting. So, solving this equation could unveil fascinating insights into real-world problems! When solving \( x = \frac { - 2 \pm \sqrt { 2 ^ { 2 } - 4 ( 1 ) ( - 15 ) } } { 2 ( 1 ) } \), keep in mind that common mistakes often involve miscalculating the discriminant or forgetting the negative sign in front of the \( b \) term. Ensure you handle the square root calculations carefully and remember to consider both the positive and negative solutions, as both could be valid in different contexts!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy