Answer
Here are the simplified results for each expression:
1. 3
2. 8
3. 1/5
4. 4
5. 36
6. 8
7. 7
8. 1/9
9. \(2^{p-9}\)
10. 1/125
11. 3/4
12. 1/6
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{4^{n}}{2^{2n-3}}\)
- step1: Calculate:
\(\frac{\left(2^{2}\right)^{n}}{2^{2n-3}}\)
- step2: Calculate:
\(\frac{2^{2n}}{2^{2n-3}}\)
- step3: Calculate:
\(2^{3}\)
Calculate or simplify the expression \( \frac{36^{x+2}}{6^{2 x+5}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{36^{x+2}}{6^{2x+5}}\)
- step1: Calculate:
\(\frac{\left(6^{2}\right)^{x+2}}{6^{2x+5}}\)
- step2: Calculate:
\(\frac{6^{2x+4}}{6^{2x+5}}\)
- step3: Calculate:
\(6^{-1}\)
Calculate or simplify the expression \( \frac{16^{p-3}}{8^{p-1}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{16^{p-3}}{8^{p-1}}\)
- step1: Calculate:
\(\frac{\left(2^{4}\right)^{p-3}}{8^{p-1}}\)
- step2: Calculate:
\(\frac{\left(2^{4}\right)^{p-3}}{\left(2^{3}\right)^{p-1}}\)
- step3: Calculate:
\(\frac{2^{4p-12}}{\left(2^{3}\right)^{p-1}}\)
- step4: Calculate:
\(\frac{2^{4p-12}}{2^{3p-3}}\)
- step5: Calculate:
\(2^{p-9}\)
Calculate or simplify the expression \( \frac{7^{2 x-1}}{49^{x-1}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{7^{2x-1}}{49^{x-1}}\)
- step1: Calculate:
\(\frac{7^{2x-1}}{\left(7^{2}\right)^{x-1}}\)
- step2: Calculate:
\(\frac{7^{2x-1}}{7^{2x-2}}\)
- step3: Calculate:
\(7\)
Calculate or simplify the expression \( \frac{9^{x+1}}{3^{2 x} \cdot 81} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{9^{x+1}}{3^{2x}\times 81}\)
- step1: Multiply:
\(\frac{9^{x+1}}{3^{2x+4}}\)
- step2: Factor the expression:
\(\frac{3^{2x+2}}{3^{2x+4}}\)
- step3: Divide the numbers:
\(\frac{1}{3^{2x+4-\left(2x+2\right)}}\)
- step4: Subtract the terms:
\(\frac{1}{3^{2}}\)
- step5: Evaluate the power:
\(\frac{1}{9}\)
Calculate or simplify the expression \( \frac{5^{x} \cdot 25^{x-1}}{5 \cdot 125^{x}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5^{x}\times 25^{x-1}}{5\times 125^{x}}\)
- step1: Multiply by \(a^{-n}:\)
\(\frac{5^{x}\times 25^{x-1}\times 5^{-1}}{125^{x}}\)
- step2: Multiply:
\(\frac{5^{3x-3}}{125^{x}}\)
- step3: Factor the expression:
\(\frac{5^{3x-3}}{5^{3x}}\)
- step4: Divide the numbers:
\(\frac{1}{5^{3x-\left(3x-3\right)}}\)
- step5: Subtract the terms:
\(\frac{1}{5^{3}}\)
- step6: Evaluate the power:
\(\frac{1}{125}\)
Calculate or simplify the expression \( \frac{5^{m+4}}{5^{m+5}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5^{m+4}}{5^{m+5}}\)
- step1: Multiply by \(a^{-n}:\)
\(5^{m+4}\times 5^{-\left(m+5\right)}\)
- step2: Calculate:
\(5^{m+4}\times 5^{-m-5}\)
- step3: Multiply:
\(5^{m+4-m-5}\)
- step4: Calculate:
\(5^{-1}\)
- step5: Rewrite the expression:
\(\frac{1}{5}\)
Calculate or simplify the expression \( \frac{3^{2 x+1}}{3^{2 x}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3^{2x+1}}{3^{2x}}\)
- step1: Multiply by \(a^{-n}:\)
\(3^{2x+1}\times 3^{-2x}\)
- step2: Multiply:
\(3^{2x+1-2x}\)
- step3: Calculate:
\(3\)
Calculate or simplify the expression \( \frac{9^{a} \cdot 4^{a-1}}{3^{2 a-1} \cdot 2^{2 a}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{9^{a}\times 4^{a-1}}{3^{2a-1}\times 2^{2a}}\)
- step1: Factor the expression:
\(\frac{3^{2a}\times 4^{a-1}}{3^{2a-1}\times 2^{2a}}\)
- step2: Reduce the fraction:
\(\frac{3\times 4^{a-1}}{2^{2a}}\)
- step3: Factor the expression:
\(\frac{3\times 2^{2a-2}}{2^{2a}}\)
- step4: Reduce the fraction:
\(\frac{3}{2^{2}}\)
- step5: Evaluate the power:
\(\frac{3}{4}\)
Calculate or simplify the expression \( \frac{2^{x+5}}{2^{x+2}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2^{x+5}}{2^{x+2}}\)
- step1: Multiply by \(a^{-n}:\)
\(2^{x+5}\times 2^{-\left(x+2\right)}\)
- step2: Calculate:
\(2^{x+5}\times 2^{-x-2}\)
- step3: Multiply:
\(2^{x+5-x-2}\)
- step4: Calculate:
\(2^{3}\)
- step5: Evaluate the power:
\(8\)
Calculate or simplify the expression \( \frac{2^{3 x+6}}{2^{3 x+4}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2^{3x+6}}{2^{3x+4}}\)
- step1: Multiply by \(a^{-n}:\)
\(2^{3x+6}\times 2^{-\left(3x+4\right)}\)
- step2: Calculate:
\(2^{3x+6}\times 2^{-3x-4}\)
- step3: Multiply:
\(2^{3x+6-3x-4}\)
- step4: Calculate:
\(2^{2}\)
- step5: Evaluate the power:
\(4\)
Calculate or simplify the expression \( \frac{6^{4 x-2}}{6^{4 x-4}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{6^{4x-2}}{6^{4x-4}}\)
- step1: Multiply by \(a^{-n}:\)
\(6^{4x-2}\times 6^{-\left(4x-4\right)}\)
- step2: Calculate:
\(6^{4x-2}\times 6^{-4x+4}\)
- step3: Multiply:
\(6^{4x-2-4x+4}\)
- step4: Calculate:
\(6^{2}\)
- step5: Evaluate the power:
\(36\)
Here are the simplified results for each expression:
1. \( \frac{3^{2x+1}}{3^{2x}} = 3^{(2x+1) - 2x} = 3^{1} = 3 \)
2. \( \frac{2^{x+5}}{2^{x+2}} = 2^{(x+5) - (x+2)} = 2^{3} = 8 \)
3. \( \frac{5^{m+4}}{5^{m+5}} = 5^{(m+4) - (m+5)} = 5^{-1} = \frac{1}{5} \)
4. \( \frac{2^{3x+6}}{2^{3x+4}} = 2^{(3x+6) - (3x+4)} = 2^{2} = 4 \)
5. \( \frac{6^{4x-2}}{6^{4x-4}} = 6^{(4x-2) - (4x-4)} = 6^{2} = 36 \)
6. \( \frac{4^{n}}{2^{2n-3}} = \frac{(2^{2})^{n}}{2^{2n-3}} = \frac{2^{2n}}{2^{2n-3}} = 2^{(2n) - (2n-3)} = 2^{3} = 8 \)
7. \( \frac{7^{2x-1}}{49^{x-1}} = \frac{7^{2x-1}}{(7^{2})^{x-1}} = \frac{7^{2x-1}}{7^{2x-2}} = 7^{(2x-1) - (2x-2)} = 7^{1} = 7 \)
8. \( \frac{9^{x+1}}{3^{2x} \cdot 81} = \frac{(3^{2})^{x+1}}{3^{2x} \cdot 3^{4}} = \frac{3^{2x+2}}{3^{2x+4}} = 3^{(2x+2) - (2x+4)} = 3^{-2} = \frac{1}{9} \)
9. \( \frac{16^{p-3}}{8^{p-1}} = \frac{(2^{4})^{p-3}}{(2^{3})^{p-1}} = \frac{2^{4(p-3)}}{2^{3(p-1)}} = 2^{4p-12 - (3p-3)} = 2^{p-9} \)
10. \( \frac{5^{x} \cdot 25^{x-1}}{5 \cdot 125^{x}} = \frac{5^{x} \cdot (5^{2})^{x-1}}{5 \cdot (5^{3})^{x}} = \frac{5^{x} \cdot 5^{2x-2}}{5^{1} \cdot 5^{3x}} = \frac{5^{(x + 2x - 2)}}{5^{(1 + 3x)}} = 5^{(3x - 2) - (3x + 1)} = 5^{-3} = \frac{1}{125} \)
11. \( \frac{9^{a} \cdot 4^{a-1}}{3^{2a-1} \cdot 2^{2a}} = \frac{(3^{2})^{a} \cdot (2^{2})^{a-1}}{3^{2a-1} \cdot 2^{2a}} = \frac{3^{2a} \cdot 2^{2a-2}}{3^{2a-1} \cdot 2^{2a}} = \frac{3^{2a} \cdot 2^{2a-2}}{3^{2a-1} \cdot 2^{2a}} = 3^{(2a) - (2a-1)} \cdot 2^{(2a-2) - (2a)} = 3^{1} \cdot 2^{-2} = \frac{3}{4} \)
12. \( \frac{36^{x+2}}{6^{2x+5}} = \frac{(6^{2})^{x+2}}{6^{2x+5}} = \frac{6^{2x+4}}{6^{2x+5}} = 6^{(2x+4) - (2x+5)} = 6^{-1} \)
In summary, the simplified results are:
1. \( 3 \)
2. \( 8 \)
3. \( \frac{1}{5} \)
4. \( 4 \)
5. \( 36 \)
6. \( 8 \)
7. \( 7 \)
8. \( \frac{1}{9} \)
9. \( 2^{p-9} \)
10. \( \frac{1}{125} \)
11. \( \frac{3}{4} \)
12. \( 6^{-1} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution