Question
upstudy study bank question image url

8. \( y=\frac{x-3}{x^{2}-7 x+12} \) (a) \( \{x \in \mathbf{R} \mid x=3, x \neq 4\} \) (b) \( \{x \in \mathbf{R} \mid x \neq 3\} \) (c) \( \{x \in \mathbf{R} \mid x \neq-3, x \neq-4\} \) (d) \( \{x \in \mathbf{R} \mid x \neq-2, x \neq-6\} \)

Ask by Hobbs Sullivan. in Mexico
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El dominio de la función \( y = \frac{x - 3}{x^2 - 7x + 12} \) es \( \{x \in \mathbb{R} \mid x \neq 3 \text{ y } x \neq 4\} \).

Solution

Analicemos la función   y = (x – 3)/(x² – 7x + 12). Para determinar el dominio tenemos que ver dónde está definida, es decir, los x para los cuales el denominador no es cero. 1. Factorizamos el denominador:   x² – 7x + 12 = (x – 3)(x – 4). 2. El denominador se anula cuando:   x – 3 = 0 ⟹ x = 3   x – 4 = 0 ⟹ x = 4. Por tanto, la función no está definida en x = 3 y en x = 4, es decir, el dominio es:   D = {x ∈ ℝ | x ≠ 3 y x ≠ 4}. Observando las opciones propuestas: (a) {x ∈ ℝ | x = 3, x ≠ 4}   – Esto indicaría solo el número 3, lo que no tiene sentido para un dominio. (b) {x ∈ ℝ | x ≠ 3}   – Aquí se excluye 3, pero se permite 4, lo cual es incorrecto ya que x = 4 también anula el denominador. (c) {x ∈ ℝ | x ≠ –3, x ≠ –4}   – Se excluyen -3 y -4, lo cual no concuerda con los valores que anulan el denominador en nuestra función. (d) {x ∈ ℝ | x ≠ –2, x ≠ –6}   – Tampoco tiene relación con los puntos problemáticos. Ninguna de las alternativas coincide con el dominio correcto, que es {x ∈ ℝ | x ≠ 3 y x ≠ 4}.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve for the domain of the function \( y=\frac{x-3}{x^{2}-7 x+12} \), we first need to identify where the function is undefined. The denominator \( x^2 - 7x + 12 \) can be factored into \( (x-3)(x-4) \). This means the function is undefined at \( x=3 \) and \( x=4 \). Therefore, the domain includes all real numbers except for these two values, which is represented by: \[ \{x \in \mathbf{R} \mid x \neq 3, x \neq 4\} \] Now, isn’t math fascinating? The way it helps us identify where a function can “live” or “thrive” without hiccups is quite powerful! If you think about it, we have to keep an eye on the denominator to avoid getting involved with division by zero. When we recognize these key points, it allows us to work with functions smoothly. And speaking of avoiding pitfalls, remember that when you're dealing with rational functions, the zeros of the denominator are crucial to identifying restrictions on the domain. For instance, mixing up the values that make the denominator zero is a common mistake. Always start by factoring and solving the denominator; this ensures you don’t miss potential exclusions from the domain. It’s a quick check that saves a lot of future head-scratching moments!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy