Question

\( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \)

Ask by Joseph Moreno. in Brazil
Dec 16,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

A integral \( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \) simplifica para \( \frac{59}{24} \) ou aproximadamente 2.4583.

Solution

It seems that the integral provided cannot be directly calculated. Let's simplify the expression inside the square root first to make it more manageable. Given: \( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \) Simplify the expression inside the square root: \[ 1 + (x^{2} - \frac{1}{4x^{2}})^{2} = 1 + x^{4} - \frac{1}{2} + \frac{1}{16x^{4}} = x^{4} + \frac{1}{2} + \frac{1}{16x^{4}} \] Now, the integral becomes: \[ \int _{1}^{2}\sqrt {x^{4} + \frac{1}{2} + \frac{1}{16x^{4}}} d x \] This integral can be further simplified and calculated. Let's proceed with the calculation. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{1}^{2} \sqrt{x^{4}+\frac{1}{2}+\frac{1}{16x^{4}}} dx\) - step1: Calculate: \(\int_{1}^{2} x^{2}+\frac{1}{4x^{2}} dx\) - step2: Evaluate the integral: \(\int x^{2}+\frac{1}{4x^{2}} dx\) - step3: Use properties of integrals: \(\int x^{2} dx+\int \frac{1}{4x^{2}} dx\) - step4: Evaluate the integral: \(\frac{x^{3}}{3}+\int \frac{1}{4x^{2}} dx\) - step5: Evaluate the integral: \(\frac{x^{3}}{3}-\frac{1}{4x}\) - step6: Return the limits: \(\left(\frac{x^{3}}{3}-\frac{1}{4x}\right)\bigg |_{1}^{2}\) - step7: Calculate the value: \(\frac{59}{24}\) The integral \( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \) simplifies to \( \frac{59}{24} \) or approximately 2.4583.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To evaluate the integral \( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \), we can start by simplifying the expression inside the square root. First, let’s simplify \( x^2 - \frac{1}{4x^2} \): \[ x^2 - \frac{1}{4x^2} = \frac{4x^4 - 1}{4x^2} \] Now we square this expression: \[ \left( x^2 - \frac{1}{4x^2} \right)^2 = \left( \frac{4x^4 - 1}{4x^2} \right)^2 = \frac{(4x^4 - 1)^2}{16x^4} \] Next, we place this back into the integral: \[ \sqrt{1 + \left( x^2 - \frac{1}{4x^2} \right)^2} = \sqrt{1 + \frac{(4x^4 - 1)^2}{16x^4}} \] Combining the terms inside the square root: \[ \sqrt{\frac{16x^4 + (4x^4 - 1)^2}{16x^4}} = \frac{\sqrt{16x^4 + (16x^8 - 8x^4 + 1)}}{4x^2} \] This simplifies further to: \[ = \frac{\sqrt{16x^8 + 8x^4 + 1}}{4x^2} \] The integral can be written as: \[ \int_{1}^{2}\frac{\sqrt{(4x^4)^{2} + 2(4x^4)(\frac{1}{2}) + (\frac{1}{2})^{2}}}{4x^2} \, dx \] Next, we find \( 16x^8 + 8x^4 + 1 = (4x^4 + 1)^2 \). Thus, we have: \[ \sqrt{16x^8 + 8x^4 + 1} = 4x^4 + 1 \] We can substitute this back into the integral: \[ \int_{1}^{2} \frac{4x^4 + 1}{4x^2} \, dx = \int_{1}^{2} (x^2 + \frac{1}{4x^2}) \, dx \] Now we can separate this integral: \[ \int_{1}^{2} x^2 \, dx + \int_{1}^{2} \frac{1}{4x^2} \, dx \] Calculating the first integral: \[ \int x^2 \, dx = \frac{x^3}{3} \Big|_1^2 = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} \] Calculating the second integral: \[ \int \frac{1}{4x^2} \, dx = -\frac{1}{4x} \Big|_1^2 = -\left(\frac{1}{8} - \frac{1}{4}\right) = \frac{1}{8} \] Combining these results gives: \[ \frac{7}{3} + \frac{1}{8} = \frac{56 + 3}{24} = \frac{59}{24} \] Thus, the value of the integral is: \[ \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x = \frac{59}{24} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy