Question
Why does doubling the mass of an object double its weight, but doubling its distance from the center of Earth reduces its weight fourfold? Hint: think of the affects of gravity and distance The weight is half the gravitational force between the object and Earth The weight is equal to the gravitational force between the object and Earth, and the gravitational force is inversely proportional to the distance squared between the object and Earth The weight is directly proportional to the square of the gravitational force between the object and Earth The weight is two times the gravitational force between the object and Earth
Ask by Lewis Parsons.
Mar 23,2025 18:11
Upstudy AI Solution
Tutor-Verified Answer
Answer
Doubling the mass of an object doubles its weight because weight is directly proportional to mass. However, doubling the distance from the center of the Earth reduces the weight by four times because the gravitational force decreases with the square of the distance.
Solution
Sign in to Unlock Answers for Free! ![]()
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock Answered by UpStudy AI and reviewed by a Professional Tutor
Like
The Deep Dive
When you double the mass of an object, its weight also doubles because weight is directly proportional to mass. This means that if you have a heavier object, the gravitational pull it experiences from Earth increases correspondingly. Imagine carrying heavier weights in the gym—the more weight you add, the harder it is to lift!
On the flip side, when you double the distance from the center of the Earth, the gravitational force acting on the object decreases, specifically by a factor of four! This is due to the inverse square law of gravity—if you increase the distance, you have to square that change. So, increasing the distance reduces gravitational pull more drastically than simply adding mass would increase weight. It's a fun balancing act of physics!
Related Questions
Un'auto viaggia su un rettilineo a 18 km/h e accelera di
2,0 m/s^2 per 1,5 s.
Calcola la distanza percorsa in tale intervallo di tempo.
Physics
Mar 12, 2025
9. Uma moto e um carro deslocam-se em sentidos opostos em uma estrada retilínea, com velocidades iguais a 72 km/h e 108 km/h, respectivamente. Se em t=0 eles estão a 1,5 km um do outro, determine:
a) o intervalo de tempo necessário para o encontro de ambos.
Physics
Mar 20, 2025
terrestre, 1000 kin piú in alto dell'altitudine di un
satellife geostazionario (circa 36000 km ).
a. 11 periodo del satellite è maggiore o minore di
24 ore?
b. Visto dalla superficie terrestre, il satellite si mud
verso est o verso ovest? Giustifica la risposta.
c. Determina il periodo del satellite.
Physics
Mar 28, 2025
RETO N° 14
Dentro de un 'pozo de dereos' de 245 m de profindidad y
seco, se deja caer una moneda. Calcule el tiempo que dura
la caida. ( g=10 m/s^2).
a) 3s, b) 8s, c) 7s, d) 4s, e) 6s
Physics
Mar 12, 2025
21 Pianale inclinato: la cassa è ferma
Un autocarro trasporta una cassa di \( 82,0 \mathrm{~kg} \).
a. Se il pianale dell'autocarro viene inclinato di \( 18^{\circ} \) e la
cassa rimane ferma, qual è lintensità della forza d
attrito statico che agisce sulla cassa?
b. Per quale angolo di inclinazione del pianale dell'au
tocarro la forza di attrito statico ha un'intensità d
225 N ?
[a. \( 249 \mathrm{~N} ; \mathrm{b} .16^{\circ} \)
Physics
Mar 12, 2025