Question
(b) Simplify the following: \( \begin{array}{lll}\text { (1) } 2^{x} \cdot 2^{x} & \text { (2) }\left(2^{5}\right)^{x} & \text { (3) }\left(3^{x}\right)^{3} \\ \text { (4) } 2^{x} \cdot 2^{3} & \text { (5) }\left(5^{3} \cdot 3^{5}\right)^{x} & \text { (6) } 9^{x} \cdot 3^{2 x} \\ \text { (7) } 81^{x} \cdot 27^{2 x} & \text { (8) } \frac{5^{x} \cdot 5^{x}}{25^{x}} & \text { (9) } \frac{\left(2^{x}\right)^{3} \cdot 2^{x}}{16^{x}} \\ \text { (10) } \frac{7^{x} \cdot 7^{2 x}}{\left(7^{2} \cdot 7\right)^{x}} & \text { (11) } \frac{25 \cdot 9^{x}}{3^{x} \cdot 3^{x} \cdot 5} & \text { (12) } \frac{\left(2^{x}\right)^{3} \cdot 27^{x}}{8^{x} \cdot\left(3^{2}\right)^{x} \cdot 3^{x}} \\ \text { (13) } \frac{12^{x} \cdot 3^{-x}}{2 \cdot 4^{x}} & \text { (14) } \frac{32^{x}}{4^{x}} & \end{array} \)
Ask by Chadwick Donnelly. in South Africa
Feb 24,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
Here are the simplified answers for each expression:
1. \( 2^{2x} \)
2. \( 2^{5x} \)
3. \( 3^{3x} \)
4. \( 2^{x+3} \)
5. \( 5^{3x} \cdot 3^{5x} \)
6. \( 3^{4x} \)
7. \( 3^{10x} \)
8. \( 1 \)
9. \( 1 \)
10. \( 1 \)
11. \( 5 \)
12. \( 1 \)
13. \( \frac{1}{2} \)
14. \( 2^{3x} \)
Solution
We wish to “simplify” each expression so that the answer is written in a single exponential form (or in simplest form). One acceptable set of answers is given below.
Let’s go through each one.
─────────────────────────────
(1) Simplify 2ˣ · 2ˣ
When multiplying powers with the same base add the exponents:
2ˣ · 2ˣ = 2^(x + x) = 2^(2x).
─────────────────────────────
(2) Simplify (2⁵)ˣ
Recall the power rule: (aᵇ)ˣ = a^(b·x), so:
(2⁵)ˣ = 2^(5x).
─────────────────────────────
(3) Simplify (3ˣ)³
Similarly, (3ˣ)³ = 3^(3x).
─────────────────────────────
(4) Simplify 2ˣ · 2³
Since the bases are the same, add exponents:
2ˣ · 2³ = 2^(x + 3).
─────────────────────────────
(5) Simplify (5³ · 3⁵)ˣ
Use the rule (ab)ˣ = aˣ · bˣ:
(5³ · 3⁵)ˣ = (5³)ˣ · (3⁵)ˣ = 5^(3x) · 3^(5x).
─────────────────────────────
(6) Simplify 9ˣ · 3^(2x)
Since 9 = 3², write:
9ˣ = (3²)ˣ = 3^(2x).
Then
9ˣ · 3^(2x) = 3^(2x) · 3^(2x) = 3^(2x+2x) = 3^(4x).
─────────────────────────────
(7) Simplify 81ˣ · 27^(2x)
Express 81 and 27 as powers of 3:
81 = 3⁴ and 27 = 3³.
So,
81ˣ = (3⁴)ˣ = 3^(4x),
27^(2x) = (3³)^(2x) = 3^(6x).
Thus,
81ˣ · 27^(2x) = 3^(4x+6x) = 3^(10x).
─────────────────────────────
(8) Simplify (5ˣ · 5ˣ) / 25ˣ
Write numerator: 5ˣ · 5ˣ = 5^(2x). Write 25 in terms of 5: 25 = 5² so
25ˣ = (5²)ˣ = 5^(2x).
Thus,
(5^(2x))/(5^(2x)) = 1.
─────────────────────────────
(9) Simplify [(2ˣ)³ · 2ˣ] / 16ˣ
Rewrite numerator:
(2ˣ)³ = 2^(3x),
so numerator becomes 2^(3x) · 2ˣ = 2^(3x + x) = 2^(4x).
Write 16 in terms of 2: 16 = 2⁴ so 16ˣ = (2⁴)ˣ = 2^(4x).
Then the expression is 2^(4x) / 2^(4x) = 1.
─────────────────────────────
(10) Simplify (7ˣ · 7^(2x)) / ((7² · 7)ˣ)
Combine the numerator:
7ˣ · 7^(2x) = 7^(x+2x) = 7^(3x).
For the denominator, note:
7² · 7 = 7^(2+1)=7³, so (7² · 7)ˣ = (7³)ˣ = 7^(3x).
Thus, the expression becomes 7^(3x)/7^(3x) = 1.
─────────────────────────────
(11) Simplify (25 · 9ˣ) / (3ˣ · 3ˣ · 5)
Combine the 3ˣ’s in the denominator: 3ˣ · 3ˣ = 3^(2x). Also, note 9 = 3² so 9ˣ = (3²)ˣ = 3^(2x). Then we have:
(25 · 3^(2x)) / (5 · 3^(2x)).
Cancel 3^(2x) (provided 3^(2x) ≠ 0) to obtain:
25/5 = 5.
─────────────────────────────
(12) Simplify [(2ˣ)³ · 27ˣ] / (8ˣ · (3²)ˣ · 3ˣ)
Write (2ˣ)³ = 2^(3x). Also, note 27 = 3³ so 27ˣ = (3³)ˣ = 3^(3x). In the denominator, 8 = 2³ so 8ˣ = (2³)ˣ = 2^(3x); also, (3²)ˣ = 3^(2x) and then extra factor 3ˣ gives 3^(2x+x)=3^(3x). Thus:
Numerator = 2^(3x) · 3^(3x) and denominator = 2^(3x) · 3^(3x), so the fraction is 1.
─────────────────────────────
(13) Simplify (12ˣ · 3^(–x)) / (2 · 4ˣ)
A good strategy is to express 12 as 3·4. Notice that:
12ˣ = (3·4)ˣ = 3ˣ · 4ˣ.
Thus numerator becomes: 3ˣ · 4ˣ · 3^(–x) = (3ˣ · 3^(–x)) · 4ˣ = 3^(0) · 4ˣ = 4ˣ.
Denominator is 2 · 4ˣ.
Cancel 4ˣ (assuming 4ˣ ≠ 0) giving 1/2.
─────────────────────────────
(14) Simplify 32ˣ / 4ˣ
Write 32 = 2⁵ and 4 = 2². Then:
32ˣ = (2⁵)ˣ = 2^(5x) and 4ˣ = (2²)ˣ = 2^(2x).
Thus,
32ˣ / 4ˣ = 2^(5x)/2^(2x) = 2^(5x – 2x) = 2^(3x).
─────────────────────────────
Final Answers
(1) 2^(2x)
(2) 2^(5x)
(3) 3^(3x)
(4) 2^(x+3)
(5) 5^(3x) · 3^(5x)
(6) 3^(4x)
(7) 3^(10x)
(8) 1
(9) 1
(10) 1
(11) 5
(12) 1
(13) 1/2
(14) 2^(3x)
Any answer written in an equivalent form is correct.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Extra Insights
(1) To simplify \( 2^{x} \cdot 2^{x} \), we can use the property of exponents that states \( a^m \cdot a^n = a^{m+n} \). Here, \( 2^{x} \cdot 2^{x} = 2^{x+x} = 2^{2x} \). (2) In \( \left(2^{5}\right)^{x} \), we can apply another exponent rule. This time, \( (a^m)^n = a^{m \cdot n} \). Therefore, \( \left(2^{5}\right)^{x} = 2^{5x} \). Keep those rules in mind, they are very handy for simplifying expressions with exponents!