Question
upstudy study bank question image url

a) \( x^{2}-10 x-20 y+145=0 \)

Ask by Martinez Lawson. in Ecuador
Jan 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Las soluciones para \( x \) son: \[ x = 5 + \frac{\sqrt{80y - 480}}{2} \quad \text{y} \quad x = 5 - \frac{\sqrt{80y - 480}}{2} \]

Solution

Para resolver la ecuación cuadrática \( x^{2}-10 x-20 y+145=0 \), primero identificamos que es una ecuación en términos de \( x \). La forma estándar de una ecuación cuadrática es \( ax^2 + bx + c = 0 \). En este caso, podemos reescribir la ecuación como: \[ x^{2} - 10x + (145 - 20y) = 0 \] Aquí, tenemos: - \( a = 1 \) - \( b = -10 \) - \( c = 145 - 20y \) Ahora, podemos usar la fórmula cuadrática para encontrar las soluciones para \( x \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Sustituyendo los valores de \( a \), \( b \) y \( c \): \[ x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot (145 - 20y)}}{2 \cdot 1} \] Simplificamos esto: \[ x = \frac{10 \pm \sqrt{100 - 4(145 - 20y)}}{2} \] Ahora, calculamos el discriminante: \[ 100 - 4(145 - 20y) = 100 - 580 + 80y = 80y - 480 \] Sustituyendo el discriminante en la fórmula: \[ x = \frac{10 \pm \sqrt{80y - 480}}{2} \] Finalmente, simplificamos la expresión: \[ x = 5 \pm \frac{\sqrt{80y - 480}}{2} \] Por lo tanto, las soluciones para \( x \) en términos de \( y \) son: \[ x = 5 + \frac{\sqrt{80y - 480}}{2} \quad \text{y} \quad x = 5 - \frac{\sqrt{80y - 480}}{2} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that the equation \( x^{2}-10 x-20 y+145=0 \) is a type of conic section? Specifically, it represents a parabola when rearranged into the standard form. Parabolas have fascinating properties, such as their axis of symmetry and vertex, which can often help in understanding their shape and position in a coordinate plane. If you're looking to solve this equation for \( y \), you can rearrange it to isolate \( y \): \( 20y = x^{2} - 10x + 145 \). Dynamic quadratic equations like these find their use in various fields, from physics and engineering to economics, where they can model projectile motion or the trajectory of objects.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy