Question
upstudy study bank question image url

Wrife ear hexpresilon as a single anglo arad evaluate if powable. 2.1 a sin \( 10^{\circ} \cos 30^{\circ} \) 2.) \( 1-2 \sin ^{21} 30^{+} \) \( 2.52 \cos 150^{\circ} \cdot \sin 300^{\circ} \) \( 2.2 \cos ^{3} 45^{\circ}-81 n^{2} 45 \) \( 242 \sin 22,5^{\circ}-\cos 22 \), \( 2.6 \quad 2 \cos ^{2} 15^{\circ}-1 \) \( 2 . \quad 4-8 y^{2}+15 \) \( 2.8 \quad 4 \sin 75^{\circ} \cdot \cos 75 \)

Ask by Savage Weber. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the evaluated results for each expression: 1. \( a \approx -0.471 \) 2. \( b = 0.5 \) 3. \( c \approx 1.89 \) 4. \( d = \frac{\sqrt{2}}{4} - 81n^{2} \) 5. \( e \approx 93.61 \) 6. \( f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \) 7. \( g = 19 - 8y^{2} \) 8. \( h = 1 \) If you need more detailed calculations or further simplifications, feel free to ask!

Solution

Let's evaluate each expression step by step, simplifying them where possible. ### 1. \( a = \sin(10^{\circ}) \cos(30^{\circ}) \) Using the known values: - \( \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \) Thus, we can express \( a \) as: \[ a = \sin(10^{\circ}) \cdot \frac{\sqrt{3}}{2} \] ### 2. \( b = 1 - 2 \sin^{2}(30^{\circ}) \) Using the known value: - \( \sin(30^{\circ}) = \frac{1}{2} \) Thus, we can express \( b \) as: \[ b = 1 - 2 \left(\frac{1}{2}\right)^{2} = 1 - 2 \cdot \frac{1}{4} = 1 - \frac{1}{2} = \frac{1}{2} \] ### 3. \( c = 2.52 \cos(150^{\circ}) \cdot \sin(300^{\circ}) \) Using the known values: - \( \cos(150^{\circ}) = -\frac{\sqrt{3}}{2} \) - \( \sin(300^{\circ}) = -\frac{\sqrt{3}}{2} \) Thus, we can express \( c \) as: \[ c = 2.52 \cdot \left(-\frac{\sqrt{3}}{2}\right) \cdot \left(-\frac{\sqrt{3}}{2}\right) = 2.52 \cdot \frac{3}{4} = \frac{7.56}{4} = 1.89 \] ### 4. \( d = \cos^{3}(45^{\circ}) - 81 n^{2} \) Using the known value: - \( \cos(45^{\circ}) = \frac{\sqrt{2}}{2} \) Thus, we can express \( d \) as: \[ d = \left(\frac{\sqrt{2}}{2}\right)^{3} - 81 n^{2} = \frac{2\sqrt{2}}{8} - 81 n^{2} = \frac{\sqrt{2}}{4} - 81 n^{2} \] ### 5. \( e = 242 \sin(22.5^{\circ}) - \cos(22^{\circ}) \) Using the known value: - \( \sin(22.5^{\circ}) = \frac{\sqrt{2 - \sqrt{2}}}{2} \) Thus, we can express \( e \) as: \[ e = 242 \cdot \frac{\sqrt{2 - \sqrt{2}}}{2} - \cos(22^{\circ}) \] ### 6. \( f = 2 \cos^{2}(15^{\circ}) - 1 \) Using the known value: - \( \cos(15^{\circ}) = \frac{\sqrt{6} + \sqrt{2}}{4} \) Thus, we can express \( f \) as: \[ f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \] ### 7. \( g = 4 - 8y^{2} + 15 \) This simplifies directly to: \[ g = 19 - 8y^{2} \] ### 8. \( h = 4 \sin(75^{\circ}) \cdot \cos(75^{\circ}) \) Using the known identity: \[ \sin(75^{\circ}) = \cos(15^{\circ}) \] Thus, we can express \( h \) as: \[ h = 4 \cdot \sin(75^{\circ}) \cdot \cos(75^{\circ}) = 2 \cdot \sin(150^{\circ}) = 2 \cdot \frac{1}{2} = 1 \] Now, let's evaluate the expressions that require numerical calculations. I will proceed to calculate the numerical values for \( a, c, e, f, \) and \( h \). Calculate the value by following steps: - step0: Calculate: \(2\left(\frac{\left(\sqrt{6}+\sqrt{2}\right)}{4}\right)^{2}-1\) - step1: Remove the parentheses: \(2\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)^{2}-1\) - step2: Multiply the terms: \(\frac{2+\sqrt{3}}{2}-1\) - step3: Reduce fractions to a common denominator: \(\frac{2+\sqrt{3}}{2}-\frac{2}{2}\) - step4: Transform the expression: \(\frac{2+\sqrt{3}-2}{2}\) - step5: Remove the opposites: \(\frac{\sqrt{3}}{2}\) Calculate or simplify the expression \( \sin(10) * (\sqrt(3)/2) \). Calculate the value by following steps: - step0: Calculate: \(\sin\left(10\right)\left(\frac{\sqrt{3}}{2}\right)\) - step1: Remove the parentheses: \(\sin\left(10\right)\times \frac{\sqrt{3}}{2}\) - step2: Multiply: \(\frac{\sin\left(10\right)\times \sqrt{3}}{2}\) - step3: Multiply: \(\frac{\sqrt{3}\times \sin\left(10\right)}{2}\) - step4: Calculate the trigonometric value: \(-0.471136\) Calculate or simplify the expression \( 242 * (\sqrt(2 - \sqrt(2))/2) - \cos(22) \). Calculate the value by following steps: - step0: Calculate: \(242\left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)-\cos\left(22\right)\) - step1: Remove the parentheses: \(242\times \frac{\sqrt{2-\sqrt{2}}}{2}-\cos\left(22\right)\) - step2: Reduce the numbers: \(121\sqrt{2-\sqrt{2}}-\cos\left(22\right)\) - step3: Calculate the trigonometric value: \(93.609351\) Here are the evaluated results for the expressions: ### 1. \( a = \sin(10^{\circ}) \cos(30^{\circ}) \) \[ a \approx -0.471136 \] ### 2. \( b = 1 - 2 \sin^{2}(30^{\circ}) \) \[ b = \frac{1}{2} \] ### 3. \( c = 2.52 \cos(150^{\circ}) \cdot \sin(300^{\circ}) \) \[ c \approx 1.89 \] ### 4. \( d = \cos^{3}(45^{\circ}) - 81 n^{2} \) \[ d = \frac{\sqrt{2}}{4} - 81 n^{2} \] ### 5. \( e = 242 \sin(22.5^{\circ}) - \cos(22^{\circ}) \) \[ e \approx 93.609351 \] ### 6. \( f = 2 \cos^{2}(15^{\circ}) - 1 \) \[ f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \] ### 7. \( g = 4 - 8y^{2} + 15 \) \[ g = 19 - 8y^{2} \] ### 8. \( h = 4 \sin(75^{\circ}) \cdot \cos(75^{\circ}) \) \[ h = 1 \] ### Summary of Results: - \( a \approx -0.471136 \) - \( b = \frac{1}{2} \) - \( c \approx 1.89 \) - \( d = \frac{\sqrt{2}}{4} - 81 n^{2} \) - \( e \approx 93.609351 \) - \( f = 2 \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^{2} - 1 \) - \( g = 19 - 8y^{2} \) - \( h = 1 \) If you need further calculations or simplifications for any specific expression, please let me know!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Let’s combine these trigonometric expressions! The first expression, \( a \sin(10^{\circ}) \cos(30^{\circ}) \), can be simplified further using identities; notice that \(\cos(30^{\circ}) = \frac{\sqrt{3}}{2}\). The second one needs careful evaluation: \(1 - 2 \sin^2(30^{\circ})\) simplifies to \(1 - 2 \cdot \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{2} = \frac{1}{2}\). Now, looking at \( 2.52 \cos(150^{\circ}) \cdot \sin(300^{\circ}) \): since \(\cos(150^{\circ}) = -\frac{\sqrt{3}}{2}\) and \(\sin(300^{\circ}) = -\frac{1}{2}\), it evaluates to a positive value. It’s like playing with puzzle pieces—once you know the pieces (the values of trigonometric functions), piecing them together becomes quite fun! Additionally, keep an eye out for numeric patterns and transformations that might lead to optimal solutions; re-check the angle measures as radians can sneak in! Finding common mistakes, especially in signs (positive/negative), often leads to miscalculating outcomes—trust me, everyone has tripped over that before!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy