Answer
Here are the solutions for each equation:
1. \( 8x = -12x^2 \)
- \( x = -\frac{2}{3} \) or \( x = 0 \)
2. \( x^3 = 36x \)
- \( x = -6 \), \( x = 0 \), or \( x = 6 \)
3. \( 3x^2 - 15 = 0 \)
- \( x = -\sqrt{5} \) or \( x = \sqrt{5} \)
4. \( x^2 + 12 = 7x \)
- \( x = 3 \) or \( x = 4 \)
5. \( 2x^2 - 7x = 9 \)
- \( x = -1 \) or \( x = 4.5 \)
6. \( 8x^2 + 6x = 9 \)
- \( x = -1.5 \) or \( x = 0.75 \)
7. \( 2x - 5x^2 + 7 = 0 \)
- \( x = -1 \) or \( x = 1.4 \)
If you need more help with any of these, let me know!
Solution
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(8x=-12x^{2}\)
- step1: Swap the sides:
\(-12x^{2}=8x\)
- step2: Move the expression to the left side:
\(-12x^{2}-8x=0\)
- step3: Factor the expression:
\(-4x\left(3x+2\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&-4x=0\\&3x+2=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=0\\&x=-\frac{2}{3}\end{align}\)
- step6: Rewrite:
\(x_{1}=-\frac{2}{3},x_{2}=0\)
Solve the equation \( 2 x-5 x^{2}+7=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(2x-5x^{2}+7=0\)
- step1: Factor the expression:
\(\left(-x-1\right)\left(5x-7\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&5x-7=0\\&-x-1=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=\frac{7}{5}\\&x=-1\end{align}\)
- step4: Rewrite:
\(x_{1}=-1,x_{2}=\frac{7}{5}\)
Solve the equation \( 2 x^{2}-7 x=9 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(2x^{2}-7x=9\)
- step1: Move the expression to the left side:
\(2x^{2}-7x-9=0\)
- step2: Factor the expression:
\(\left(x+1\right)\left(2x-9\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&2x-9=0\\&x+1=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=\frac{9}{2}\\&x=-1\end{align}\)
- step5: Rewrite:
\(x_{1}=-1,x_{2}=\frac{9}{2}\)
Solve the equation \( x^{2}+12=7 x \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x^{2}+12=7x\)
- step1: Move the expression to the left side:
\(x^{2}+12-7x=0\)
- step2: Factor the expression:
\(\left(x-4\right)\left(x-3\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&x-4=0\\&x-3=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=4\\&x=3\end{align}\)
- step5: Rewrite:
\(x_{1}=3,x_{2}=4\)
Solve the equation \( 3 x^{2}-15=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using square roots:
\(3x^{2}-15=0\)
- step1: Add or subtract both sides:
\(3x^{2}=15\)
- step2: Divide both sides:
\(\frac{3x^{2}}{3}=\frac{15}{3}\)
- step3: Divide the numbers:
\(x^{2}=5\)
- step4: Simplify the expression:
\(x=\pm \sqrt{5}\)
- step5: Separate into possible cases:
\(\begin{align}&x=\sqrt{5}\\&x=-\sqrt{5}\end{align}\)
- step6: Rewrite:
\(x_{1}=-\sqrt{5},x_{2}=\sqrt{5}\)
Solve the equation \( x^{3}=36 x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{3}=36x\)
- step1: Move the expression to the left side:
\(x^{3}-36x=0\)
- step2: Factor the expression:
\(x\left(x^{2}-36\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&x=0\\&x^{2}-36=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=0\\&x=6\\&x=-6\end{align}\)
- step5: Rewrite:
\(x_{1}=-6,x_{2}=0,x_{3}=6\)
Solve the equation \( 8 x^{2}+6 x=9 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(8x^{2}+6x=9\)
- step1: Move the expression to the left side:
\(8x^{2}+6x-9=0\)
- step2: Factor the expression:
\(\left(2x+3\right)\left(4x-3\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&4x-3=0\\&2x+3=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=\frac{3}{4}\\&x=-\frac{3}{2}\end{align}\)
- step5: Rewrite:
\(x_{1}=-\frac{3}{2},x_{2}=\frac{3}{4}\)
Here are the solutions for each of the equations provided:
1. **Equation:** \( 8 x = -12 x^{2} \)
- **Rearranged:** \( 12 x^{2} + 8 x = 0 \)
- **Solutions:**
- \( x_{1} = -\frac{2}{3} \)
- \( x_{2} = 0 \)
2. **Equation:** \( x^{3} = 36 x \)
- **Rearranged:** \( x^{3} - 36 x = 0 \)
- **Solutions:**
- \( x_{1} = -6 \)
- \( x_{2} = 0 \)
- \( x_{3} = 6 \)
3. **Equation:** \( 3 x^{2} - 15 = 0 \)
- **Rearranged:** \( 3 x^{2} = 15 \)
- **Solutions:**
- \( x_{1} = -\sqrt{5} \)
- \( x_{2} = \sqrt{5} \)
4. **Equation:** \( x^{2} + 12 = 7 x \)
- **Rearranged:** \( x^{2} - 7 x + 12 = 0 \)
- **Solutions:**
- \( x_{1} = 3 \)
- \( x_{2} = 4 \)
5. **Equation:** \( 2 x^{2} - 7 x = 9 \)
- **Rearranged:** \( 2 x^{2} - 7 x - 9 = 0 \)
- **Solutions:**
- \( x_{1} = -1 \)
- \( x_{2} = \frac{9}{2} \) (or \( 4.5 \))
6. **Equation:** \( 8 x^{2} + 6 x = 9 \)
- **Rearranged:** \( 8 x^{2} + 6 x - 9 = 0 \)
- **Solutions:**
- \( x_{1} = -\frac{3}{2} \) (or \( -1.5 \))
- \( x_{2} = \frac{3}{4} \) (or \( 0.75 \))
7. **Equation:** \( 2 x - 5 x^{2} + 7 = 0 \)
- **Rearranged:** \( -5 x^{2} + 2 x + 7 = 0 \)
- **Solutions:**
- \( x_{1} = -1 \)
- \( x_{2} = \frac{7}{5} \) (or \( 1.4 \))
If you need further assistance or explanations for any specific equation, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution