Answer
(a) Monthly payment for the credit union: \$665.11
(b) Monthly payment for the bank: \$569.34
(c) The bank's loan has a lower total amount to pay off by \$63.02 compared to the credit union.
Solution
To solve this problem, we will use the formula for the monthly payment on an amortized loan, which is given by:
\[
M = P \frac{r(1 + r)^n}{(1 + r)^n - 1}
\]
where:
- \( M \) is the monthly payment,
- \( P \) is the loan principal (amount borrowed),
- \( r \) is the monthly interest rate (annual interest rate divided by 12),
- \( n \) is the total number of payments (loan term in months).
### Part (a): Credit Union Offer
1. **Loan Amount**: \( P = 37000 \)
2. **Annual Interest Rate**: \( 8.9\% \) or \( 0.089 \)
3. **Monthly Interest Rate**: \( r = \frac{0.089}{12} \)
4. **Loan Term**: \( 6 \) years or \( n = 6 \times 12 \)
Now, let's calculate the monthly payment \( M \) for the credit union offer.
### Part (b): Bank Offer
1. **Loan Amount**: \( P = 37000 \)
2. **Annual Interest Rate**: \( 7.6\% \) or \( 0.076 \)
3. **Monthly Interest Rate**: \( r = \frac{0.076}{12} \)
4. **Loan Term**: \( 7 \) years or \( n = 7 \times 12 \)
Now, let's calculate the monthly payment \( M \) for the bank offer.
### Part (c): Total Amount Paid
To find out which lender's car loan would have the lowest total amount to pay off, we will calculate the total amount paid for each loan:
\[
\text{Total Amount Paid} = M \times n
\]
Now, let's perform the calculations for both parts (a) and (b) and then compare the total amounts.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{37000\left(\frac{0.076}{12}\right)\left(1+\left(\frac{0.076}{12}\right)\right)^{7\times 12}}{\left(\left(1+\left(\frac{0.076}{12}\right)\right)^{7\times 12}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{37000\left(\frac{0.076}{12}\right)\left(1+\left(\frac{0.076}{12}\right)\right)^{7\times 12}}{\left(1+\left(\frac{0.076}{12}\right)\right)^{7\times 12}-1}\)
- step2: Divide the terms:
\(\frac{37000\left(\frac{0.076}{12}\right)\left(1+\frac{19}{3000}\right)^{7\times 12}}{\left(1+\left(\frac{0.076}{12}\right)\right)^{7\times 12}-1}\)
- step3: Add the numbers:
\(\frac{37000\left(\frac{0.076}{12}\right)\left(\frac{3019}{3000}\right)^{7\times 12}}{\left(1+\left(\frac{0.076}{12}\right)\right)^{7\times 12}-1}\)
- step4: Divide the terms:
\(\frac{37000\left(\frac{0.076}{12}\right)\left(\frac{3019}{3000}\right)^{7\times 12}}{\left(1+\frac{19}{3000}\right)^{7\times 12}-1}\)
- step5: Add the numbers:
\(\frac{37000\left(\frac{0.076}{12}\right)\left(\frac{3019}{3000}\right)^{7\times 12}}{\left(\frac{3019}{3000}\right)^{7\times 12}-1}\)
- step6: Divide the terms:
\(\frac{37000\times \frac{19}{3000}\left(\frac{3019}{3000}\right)^{7\times 12}}{\left(\frac{3019}{3000}\right)^{7\times 12}-1}\)
- step7: Multiply the numbers:
\(\frac{37000\times \frac{19}{3000}\left(\frac{3019}{3000}\right)^{84}}{\left(\frac{3019}{3000}\right)^{7\times 12}-1}\)
- step8: Multiply the numbers:
\(\frac{37000\times \frac{19}{3000}\left(\frac{3019}{3000}\right)^{84}}{\left(\frac{3019}{3000}\right)^{84}-1}\)
- step9: Multiply:
\(\frac{\frac{703\times 3019^{84}}{3\times 3000^{84}}}{\left(\frac{3019}{3000}\right)^{84}-1}\)
- step10: Subtract the numbers:
\(\frac{\frac{703\times 3019^{84}}{3\times 3000^{84}}}{\frac{3019^{84}-3000^{84}}{3000^{84}}}\)
- step11: Multiply by the reciprocal:
\(\frac{703\times 3019^{84}}{3\times 3000^{84}}\times \frac{3000^{84}}{3019^{84}-3000^{84}}\)
- step12: Rewrite the expression:
\(\frac{703\times 3019^{84}}{3\times 3000^{84}}\times \frac{3^{84}\times 1000^{84}}{3019^{84}-3000^{84}}\)
- step13: Reduce the numbers:
\(\frac{703\times 3019^{84}}{3000^{84}}\times \frac{3^{83}\times 1000^{84}}{3019^{84}-3000^{84}}\)
- step14: Rewrite the expression:
\(\frac{703\times 3019^{84}}{3^{84}\times 1000^{84}}\times \frac{3^{83}\times 1000^{84}}{3019^{84}-3000^{84}}\)
- step15: Reduce the numbers:
\(\frac{703\times 3019^{84}}{3}\times \frac{1}{3019^{84}-3000^{84}}\)
- step16: Multiply the fractions:
\(\frac{703\times 3019^{84}}{3\left(3019^{84}-3000^{84}\right)}\)
- step17: Multiply:
\(\frac{703\times 3019^{84}}{3\times 3019^{84}-3\times 3000^{84}}\)
Calculate or simplify the expression \( 37000 * (0.089/12) * (1 + (0.089/12))^(6*12) / ((1 + (0.089/12))^(6*12) - 1) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{37000\left(\frac{0.089}{12}\right)\left(1+\left(\frac{0.089}{12}\right)\right)^{6\times 12}}{\left(\left(1+\left(\frac{0.089}{12}\right)\right)^{6\times 12}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{37000\left(\frac{0.089}{12}\right)\left(1+\left(\frac{0.089}{12}\right)\right)^{6\times 12}}{\left(1+\left(\frac{0.089}{12}\right)\right)^{6\times 12}-1}\)
- step2: Divide the terms:
\(\frac{37000\left(\frac{0.089}{12}\right)\left(1+\frac{89}{12000}\right)^{6\times 12}}{\left(1+\left(\frac{0.089}{12}\right)\right)^{6\times 12}-1}\)
- step3: Add the numbers:
\(\frac{37000\left(\frac{0.089}{12}\right)\left(\frac{12089}{12000}\right)^{6\times 12}}{\left(1+\left(\frac{0.089}{12}\right)\right)^{6\times 12}-1}\)
- step4: Divide the terms:
\(\frac{37000\left(\frac{0.089}{12}\right)\left(\frac{12089}{12000}\right)^{6\times 12}}{\left(1+\frac{89}{12000}\right)^{6\times 12}-1}\)
- step5: Add the numbers:
\(\frac{37000\left(\frac{0.089}{12}\right)\left(\frac{12089}{12000}\right)^{6\times 12}}{\left(\frac{12089}{12000}\right)^{6\times 12}-1}\)
- step6: Divide the terms:
\(\frac{37000\times \frac{89}{12000}\left(\frac{12089}{12000}\right)^{6\times 12}}{\left(\frac{12089}{12000}\right)^{6\times 12}-1}\)
- step7: Multiply the numbers:
\(\frac{37000\times \frac{89}{12000}\left(\frac{12089}{12000}\right)^{72}}{\left(\frac{12089}{12000}\right)^{6\times 12}-1}\)
- step8: Multiply the numbers:
\(\frac{37000\times \frac{89}{12000}\left(\frac{12089}{12000}\right)^{72}}{\left(\frac{12089}{12000}\right)^{72}-1}\)
- step9: Multiply:
\(\frac{\frac{3293\times 12089^{72}}{12\times 12000^{72}}}{\left(\frac{12089}{12000}\right)^{72}-1}\)
- step10: Subtract the numbers:
\(\frac{\frac{3293\times 12089^{72}}{12\times 12000^{72}}}{\frac{12089^{72}-12000^{72}}{12000^{72}}}\)
- step11: Multiply by the reciprocal:
\(\frac{3293\times 12089^{72}}{12\times 12000^{72}}\times \frac{12000^{72}}{12089^{72}-12000^{72}}\)
- step12: Rewrite the expression:
\(\frac{3293\times 12089^{72}}{12\times 12000^{72}}\times \frac{12^{72}\times 1000^{72}}{12089^{72}-12000^{72}}\)
- step13: Reduce the numbers:
\(\frac{3293\times 12089^{72}}{12000^{72}}\times \frac{12^{71}\times 1000^{72}}{12089^{72}-12000^{72}}\)
- step14: Rewrite the expression:
\(\frac{3293\times 12089^{72}}{12^{72}\times 1000^{72}}\times \frac{12^{71}\times 1000^{72}}{12089^{72}-12000^{72}}\)
- step15: Reduce the numbers:
\(\frac{3293\times 12089^{72}}{12\times 1000^{72}}\times \frac{1000^{72}}{12089^{72}-12000^{72}}\)
- step16: Rewrite the expression:
\(\frac{3293\times 12089^{72}}{12\times 1000^{72}}\times \frac{8^{72}\times 125^{72}}{12089^{72}-12000^{72}}\)
- step17: Rewrite the expression:
\(\frac{3293\times 12089^{72}}{4\times 3\times 1000^{72}}\times \frac{8^{72}\times 125^{72}}{12089^{72}-12000^{72}}\)
- step18: Rewrite the expression:
\(\frac{3293\times 12089^{72}}{2^{2}\times 3\times 1000^{72}}\times \frac{2^{216}\times 125^{72}}{12089^{72}-12000^{72}}\)
- step19: Reduce the numbers:
\(\frac{3293\times 12089^{72}}{3\times 1000^{72}}\times \frac{2^{214}\times 125^{72}}{12089^{72}-12000^{72}}\)
- step20: Rewrite the expression:
\(\frac{3293\times 12089^{72}}{3\times 8^{72}\times 125^{72}}\times \frac{2^{214}\times 125^{72}}{12089^{72}-12000^{72}}\)
- step21: Rewrite the expression:
\(\frac{3293\times 12089^{72}}{3\times 2^{216}\times 125^{72}}\times \frac{2^{214}\times 125^{72}}{12089^{72}-12000^{72}}\)
- step22: Reduce the numbers:
\(\frac{3293\times 12089^{72}}{3\times 2^{2}}\times \frac{1}{12089^{72}-12000^{72}}\)
- step23: Multiply the fractions:
\(\frac{3293\times 12089^{72}}{12\left(12089^{72}-12000^{72}\right)}\)
- step24: Multiply:
\(\frac{3293\times 12089^{72}}{12\times 12089^{72}-12\times 12000^{72}}\)
Calculate or simplify the expression \( 665.110014 * (6 * 12) \).
Calculate the value by following steps:
- step0: Calculate:
\(665.110014\left(6\times 12\right)\)
- step1: Remove the parentheses:
\(665.110014\times 6\times 12\)
- step2: Multiply the terms:
\(3990.660084\times 12\)
- step3: Multiply the numbers:
\(47887.921008\)
Calculate or simplify the expression \( 569.344029 * (7 * 12) \).
Calculate the value by following steps:
- step0: Calculate:
\(569.344029\left(7\times 12\right)\)
- step1: Remove the parentheses:
\(569.344029\times 7\times 12\)
- step2: Multiply the terms:
\(3985.408203\times 12\)
- step3: Multiply the numbers:
\(47824.898436\)
### Part (a): Monthly Payment for Credit Union
Using the formula, we calculated the monthly payment for the credit union:
\[
M = 665.11
\]
Thus, the monthly payment for the credit union is:
\[
\text{Monthly Payment (Credit Union)} = \$665.11
\]
### Part (b): Monthly Payment for Bank
Using the formula, we calculated the monthly payment for the bank:
\[
M = 569.34
\]
Thus, the monthly payment for the bank is:
\[
\text{Monthly Payment (Bank)} = \$569.34
\]
### Part (c): Total Amount Paid
Now, we calculate the total amount paid for each loan:
1. **Total Amount Paid to Credit Union**:
\[
\text{Total Amount (Credit Union)} = 665.11 \times (6 \times 12) = 47887.92
\]
2. **Total Amount Paid to Bank**:
\[
\text{Total Amount (Bank)} = 569.34 \times (7 \times 12) = 47824.90
\]
### Comparison of Total Amounts
- Total amount paid to the credit union: \( \$47887.92 \)
- Total amount paid to the bank: \( \$47824.90 \)
Now, we find the difference:
\[
\text{Difference} = 47887.92 - 47824.90 = 63.02
\]
### Final Answers
(a) The monthly payment for the credit union is \( \$665.11 \).
(b) The monthly payment for the bank is \( \$569.34 \).
(c) The bank's car loan would have the lowest total amount to pay off, and the total amount paid would be \( \$63.02 \) less than to the credit union.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution