Answer
Here are the estimated and long division results for each problem:
1. \( 2453 \div 312 \approx 7.86 \)
2. \( 5876 \div 424 \approx 13.93 \)
3. \( 3275 \div 25 = 131 \)
4. \( 3772 \div 323 \approx 11.68 \)
5. \( 4498 \div 634 \approx 7.08 \)
6. \( 6640 \div 30 \approx 221.33 \)
7. \( 9578 \div 162 \approx 59.06 \)
8. \( 7645 \div 502 \approx 15.24 \)
9. \( 9200 \div 83 \approx 110.84 \)
Use a calculator to check these answers.
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3772=323x\)
- step1: Swap the sides:
\(323x=3772\)
- step2: Divide both sides:
\(\frac{323x}{323}=\frac{3772}{323}\)
- step3: Divide the numbers:
\(x=\frac{3772}{323}\)
Solve the equation \( 6640=30*x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(6640=30x\)
- step1: Swap the sides:
\(30x=6640\)
- step2: Divide both sides:
\(\frac{30x}{30}=\frac{6640}{30}\)
- step3: Divide the numbers:
\(x=\frac{664}{3}\)
Solve the equation \( 9200=83*x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9200=83x\)
- step1: Swap the sides:
\(83x=9200\)
- step2: Divide both sides:
\(\frac{83x}{83}=\frac{9200}{83}\)
- step3: Divide the numbers:
\(x=\frac{9200}{83}\)
Solve the equation \( 9578=162*x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9578=162x\)
- step1: Swap the sides:
\(162x=9578\)
- step2: Divide both sides:
\(\frac{162x}{162}=\frac{9578}{162}\)
- step3: Divide the numbers:
\(x=\frac{4789}{81}\)
Solve the equation \( 5876=424*x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5876=424x\)
- step1: Swap the sides:
\(424x=5876\)
- step2: Divide both sides:
\(\frac{424x}{424}=\frac{5876}{424}\)
- step3: Divide the numbers:
\(x=\frac{1469}{106}\)
Solve the equation \( 2453=312*x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2453=312x\)
- step1: Swap the sides:
\(312x=2453\)
- step2: Divide both sides:
\(\frac{312x}{312}=\frac{2453}{312}\)
- step3: Divide the numbers:
\(x=\frac{2453}{312}\)
Solve the equation \( 4498=634*x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4498=634x\)
- step1: Swap the sides:
\(634x=4498\)
- step2: Divide both sides:
\(\frac{634x}{634}=\frac{4498}{634}\)
- step3: Divide the numbers:
\(x=\frac{2249}{317}\)
Solve the equation \( 7645=502*x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(7645=502x\)
- step1: Swap the sides:
\(502x=7645\)
- step2: Divide both sides:
\(\frac{502x}{502}=\frac{7645}{502}\)
- step3: Divide the numbers:
\(x=\frac{7645}{502}\)
Solve the equation \( 3275=25*x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3275=25x\)
- step1: Swap the sides:
\(25x=3275\)
- step2: Divide both sides:
\(\frac{25x}{25}=\frac{3275}{25}\)
- step3: Divide the numbers:
\(x=131\)
Let's estimate and then perform long division for each of the given problems.
### 1. \( 2453 \div 312 \)
**Estimation:**
- \( 2453 \approx 2500 \)
- \( 312 \approx 300 \)
- Estimated quotient: \( \frac{2500}{300} \approx 8.33 \)
**Long Division:**
- \( 2453 \div 312 \approx 7.86 \)
### 2. \( 5876 \div 424 \)
**Estimation:**
- \( 5876 \approx 5900 \)
- \( 424 \approx 400 \)
- Estimated quotient: \( \frac{5900}{400} \approx 14.75 \)
**Long Division:**
- \( 5876 \div 424 \approx 13.93 \)
### 3. \( 3275 \div 25 \)
**Estimation:**
- \( 3275 \approx 3300 \)
- \( 25 \approx 25 \)
- Estimated quotient: \( \frac{3300}{25} = 132 \)
**Long Division:**
- \( 3275 \div 25 = 131 \)
### 4. \( 3772 \div 323 \)
**Estimation:**
- \( 3772 \approx 3800 \)
- \( 323 \approx 300 \)
- Estimated quotient: \( \frac{3800}{300} \approx 12.67 \)
**Long Division:**
- \( 3772 \div 323 \approx 11.68 \)
### 5. \( 4498 \div 634 \)
**Estimation:**
- \( 4498 \approx 4500 \)
- \( 634 \approx 600 \)
- Estimated quotient: \( \frac{4500}{600} = 7.5 \)
**Long Division:**
- \( 4498 \div 634 \approx 7.08 \)
### 6. \( 6640 \div 30 \)
**Estimation:**
- \( 6640 \approx 6600 \)
- \( 30 \approx 30 \)
- Estimated quotient: \( \frac{6600}{30} = 220 \)
**Long Division:**
- \( 6640 \div 30 \approx 221.33 \)
### 7. \( 9578 \div 162 \)
**Estimation:**
- \( 9578 \approx 9600 \)
- \( 162 \approx 160 \)
- Estimated quotient: \( \frac{9600}{160} = 60 \)
**Long Division:**
- \( 9578 \div 162 \approx 59.06 \)
### 8. \( 7645 \div 502 \)
**Estimation:**
- \( 7645 \approx 7600 \)
- \( 502 \approx 500 \)
- Estimated quotient: \( \frac{7600}{500} = 15.2 \)
**Long Division:**
- \( 7645 \div 502 \approx 15.24 \)
### 9. \( 9200 \div 83 \)
**Estimation:**
- \( 9200 \approx 9200 \)
- \( 83 \approx 80 \)
- Estimated quotient: \( \frac{9200}{80} = 115 \)
**Long Division:**
- \( 9200 \div 83 \approx 110.84 \)
### Summary of Results
1. \( 2453 \div 312 \approx 7.86 \)
2. \( 5876 \div 424 \approx 13.93 \)
3. \( 3275 \div 25 = 131 \)
4. \( 3772 \div 323 \approx 11.68 \)
5. \( 4498 \div 634 \approx 7.08 \)
6. \( 6640 \div 30 \approx 221.33 \)
7. \( 9578 \div 162 \approx 59.06 \)
8. \( 7645 \div 502 \approx 15.24 \)
9. \( 9200 \div 83 \approx 110.84 \)
You can use a calculator to verify these results.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution