Answer
Despejando las variables en las ecuaciones:
1. **Ecuación 1**: No se puede resolver debido a la notación confusa.
2. **Ecuación 2**: \( x = -12 \) y \( x = 36 \).
3. **Ecuación 3**: \( x = \frac{d \sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \) y \( x = -\frac{d \sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \).
4. **Ecuación 4**: \( x = -3 \) y \( x = 3 \).
5. **Ecuación 5**: No hay solución.
Si tienes más preguntas o necesitas ayuda con otras ecuaciones, no dudes en preguntar.
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{36+x}{x}=\frac{4x}{36+x}\)
- step1: Find the domain:
\(\frac{36+x}{x}=\frac{4x}{36+x},x \in \left(-\infty,-36\right)\cup \left(-36,0\right)\cup \left(0,+\infty\right)\)
- step2: Cross multiply:
\(\left(36+x\right)\left(36+x\right)=x\times 4x\)
- step3: Simplify the equation:
\(\left(36+x\right)^{2}=4x^{2}\)
- step4: Expand the expression:
\(1296+72x+x^{2}=4x^{2}\)
- step5: Move the expression to the left side:
\(1296+72x+x^{2}-4x^{2}=0\)
- step6: Subtract the terms:
\(1296+72x-3x^{2}=0\)
- step7: Factor the expression:
\(3\left(36-x\right)\left(12+x\right)=0\)
- step8: Divide the terms:
\(\left(36-x\right)\left(12+x\right)=0\)
- step9: Separate into possible cases:
\(\begin{align}&36-x=0\\&12+x=0\end{align}\)
- step10: Solve the equation:
\(\begin{align}&x=36\\&x=-12\end{align}\)
- step11: Check if the solution is in the defined range:
\(\begin{align}&x=36\\&x=-12\end{align},x \in \left(-\infty,-36\right)\cup \left(-36,0\right)\cup \left(0,+\infty\right)\)
- step12: Find the intersection:
\(\begin{align}&x=36\\&x=-12\end{align}\)
- step13: Rewrite:
\(x_{1}=-12,x_{2}=36\)
Solve the equation \( \frac{30}{26}=\frac{2 x-1}{2 x-1} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{30}{26}=\frac{2x-1}{2x-1}\)
- step1: Reduce the fraction:
\(\frac{15}{13}=1\)
- step2: Multiply both sides of the equation by LCD:
\(\frac{15}{13}\times 13=1\times 13\)
- step3: Simplify the equation:
\(15=13\)
- step4: The statement is false:
\(x \in \varnothing \)
Solve the equation \( 5^{2}=x^{2}+4^{2} \).
Solve the quadratic equation by following steps:
- step0: Solve using square roots:
\(5^{2}=x^{2}+4^{2}\)
- step1: Evaluate the power:
\(5^{2}=x^{2}+16\)
- step2: Swap the sides:
\(x^{2}+16=5^{2}\)
- step3: Add or subtract both sides:
\(x^{2}=9\)
- step4: Simplify the expression:
\(x=\pm \sqrt{9}\)
- step5: Simplify the expression:
\(x=\pm 3\)
- step6: Separate into possible cases:
\(\begin{align}&x=3\\&x=-3\end{align}\)
- step7: Rewrite:
\(x_{1}=-3,x_{2}=3\)
Solve the equation \( V_{1}^{2} x^{2}+V_{2} x^{2}=d^{2} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(V_{1}^{2}x^{2}+V_{2}x^{2}=d^{2}\)
- step1: Simplify:
\(\left(V_{1}^{2}+V_{2}\right)x^{2}=d^{2}\)
- step2: Divide both sides:
\(\frac{\left(V_{1}^{2}+V_{2}\right)x^{2}}{V_{1}^{2}+V_{2}}=\frac{d^{2}}{V_{1}^{2}+V_{2}}\)
- step3: Divide the numbers:
\(x^{2}=\frac{d^{2}}{V_{1}^{2}+V_{2}}\)
- step4: Simplify the expression:
\(x=\pm \sqrt{\frac{d^{2}}{V_{1}^{2}+V_{2}}}\)
- step5: Simplify:
\(x=\pm \frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}\\&x=-\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}\end{align}\)
Vamos a despejar las variables en cada una de las ecuaciones dadas, siguiendo las reglas y principios de álgebra.
### 1. Ecuación: \( 2_{2} a(2 x-1)=3 \frac{9}{2} a \)
Parece que hay un error en la notación de la ecuación. La notación \( 2_{2} a \) no es clara. Por favor, verifica la ecuación y proporciona la forma correcta para que pueda resolverla.
### 2. Ecuación: \( \frac{36+x}{x}=\frac{4 x}{36+x} \)
Al resolver esta ecuación, encontramos que:
\[
x_{1} = -12, \quad x_{2} = 36
\]
### 3. Ecuación: \( V_{1}^{2} x^{2}+V_{2} x^{2}=d^{2} \)
Despejando \( x \), obtenemos:
\[
x = \frac{d \sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \quad \text{y} \quad x = -\frac{d \sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}
\]
### 4. Ecuación: \( 5^{2}=x^{2}+4^{2} \)
Al resolver esta ecuación, encontramos que:
\[
x_{1} = -3, \quad x_{2} = 3
\]
### 5. Ecuación: \( \frac{30}{26}=\frac{2 x-1}{2 x-1} \)
Al resolver esta ecuación, encontramos que:
\[
x \in \varnothing
\]
Esto significa que no hay solución para esta ecuación, ya que el denominador se anula.
Si necesitas más aclaraciones o si hay alguna ecuación que quieras revisar, házmelo saber.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution