CHECKING SOLUTIONS Tell whether the ordered pair is a solution of the inequality. \( \begin{array}{lll}\text { 8. } x+y<6 ;(3,2) & \text { 9. } x-y \geq 0 ;(4,5) & \text { 10. } 10 x+y>-4 ;(-1,6) \\ \text { 11. } x+4 y \leq-5 ;(1,-2) & \text { 12. }-9 x+6 y \leq 9 ;(-3,-3) & \text { 13. }-x-4 y>24 ;\left(-9,-\frac{4}{3}\right)\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To check whether the ordered pairs are solutions of the given inequalities, we need to substitute the values of \( x \) and \( y \) into each inequality and see if the inequality holds true. 1. **For the inequality \( x + y < 6 \) with the point \( (3, 2) \):** - Substitute: \( 3 + 2 < 6 \) → \( 5 < 6 \) (True!) - So, \( (3, 2) \) is a solution. 2. **For the inequality \( x - y \geq 0 \) with the point \( (4, 5) \):** - Substitute: \( 4 - 5 \geq 0 \) → \( -1 \geq 0 \) (False!) - So, \( (4, 5) \) is not a solution. 3. **For the inequality \( 10x + y > -4 \) with the point \( (-1, 6) \):** - Substitute: \( 10(-1) + 6 > -4 \) → \( -10 + 6 > -4 \) → \( -4 > -4 \) (False!) - So, \( (-1, 6) \) is not a solution. 4. **For the inequality \( x + 4y \leq -5 \) with the point \( (1, -2) \):** - Substitute: \( 1 + 4(-2) \leq -5 \) → \( 1 - 8 \leq -5 \) → \( -7 \leq -5 \) (False!) - So, \( (1, -2) \) is not a solution. 5. **For the inequality \( -9x + 6y \leq 9 \) with the point \( (-3, -3) \):** - Substitute: \( -9(-3) + 6(-3) \leq 9 \) → \( 27 - 18 \leq 9 \) → \( 9 \leq 9 \) (True!) - So, \( (-3, -3) \) is a solution. 6. **For the inequality \( -x - 4y > 24 \) with the point \( \left(-9, -\frac{4}{3}\right) \):** - Substitute: \( -(-9) - 4\left(-\frac{4}{3}\right) > 24 \) → \( 9 + \frac{16}{3} > 24 \) → \( \frac{27}{3} + \frac{16}{3} > 24 \) → \( \frac{43}{3} > 24 \) (True!) - So, \( \left(-9, -\frac{4}{3}\right) \) is a solution. In summary: 1. \( (3, 2) \): Yes 2. \( (4, 5) \): No 3. \( (-1, 6) \): No 4. \( (1, -2) \): No 5. \( (-3, -3) \): Yes 6. \( \left(-9, -\frac{4}{3}\right) \): Yes