Question
upstudy study bank question image url

CHECKING SOLUTIONS Tell whether the ordered pair is a solution of the inequality. \( \begin{array}{lll}\text { 8. } x+y<6 ;(3,2) & \text { 9. } x-y \geq 0 ;(4,5) & \text { 10. } 10 x+y>-4 ;(-1,6) \\ \text { 11. } x+4 y \leq-5 ;(1,-2) & \text { 12. }-9 x+6 y \leq 9 ;(-3,-3) & \text { 13. }-x-4 y>24 ;\left(-9,-\frac{4}{3}\right)\end{array} \)

Ask by Cole Daniel. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

- \( (3, 2) \) es solución. - \( (4, 5) \) no es solución. - \( (-1, 6) \) no es solución. - \( (1, -2) \) es solución. - \( (-3, -3) \) es solución. - \( \left(-9, -\frac{4}{3}\right) \) no es solución.

Solution

Check the inequality by following steps: - step0: Check the inequality is true or false: \(3+2<6\) - step1: Add the numbers: \(5<6\) - step2: Check the inequality: \(\textrm{true}\) Solve the equation \( 10*(-1)+6>-4 \). Check the inequality by following steps: - step0: Check the inequality is true or false: \(10\left(-1\right)+6>-4\) - step1: Simplify: \(-4>-4\) - step2: Check the inequality: \(\textrm{false}\) Solve the equation \( -(-9)-4*(-4/3)>24 \). Check the inequality by following steps: - step0: Check the inequality is true or false: \(-\left(-9\right)-4\left(\frac{-4}{3}\right)>24\) - step1: Simplify: \(\frac{43}{3}>24\) - step2: Calculate: \(14.\dot{3}>24\) - step3: Check the inequality: \(\textrm{false}\) Solve the equation \( 1+4*(-2)<=-5 \). Check the inequality by following steps: - step0: Check the inequality is true or false: \(1+4\left(-2\right)\leq -5\) - step1: Simplify: \(-7\leq -5\) - step2: Check the inequality: \(\textrm{true}\) Solve the equation \( -9*(-3)+6*(-3)<=9 \). Check the inequality by following steps: - step0: Check the inequality is true or false: \(-9\left(-3\right)+6\left(-3\right)\leq 9\) - step1: Simplify: \(9\leq 9\) - step2: Check the inequality: \(\textrm{true}\) Solve the equation \( 4-5>=0 \). Check the inequality by following steps: - step0: Check the inequality is true or false: \(4-5\geq 0\) - step1: Subtract the numbers: \(-1\geq 0\) - step2: Check the inequality: \(\textrm{false}\) Vamos a verificar si cada par ordenado es una solución de la desigualdad correspondiente: 8. Para \( x + y < 6 \) con el par \( (3, 2) \): \[ 3 + 2 < 6 \quad \text{(Verdadero)} \] El par \( (3, 2) \) es una solución. 9. Para \( x - y \geq 0 \) con el par \( (4, 5) \): \[ 4 - 5 \geq 0 \quad \text{(Falso)} \] El par \( (4, 5) \) no es una solución. 10. Para \( 10x + y > -4 \) con el par \( (-1, 6) \): \[ 10(-1) + 6 > -4 \quad \text{(Falso)} \] El par \( (-1, 6) \) no es una solución. 11. Para \( x + 4y \leq -5 \) con el par \( (1, -2) \): \[ 1 + 4(-2) \leq -5 \quad \text{(Verdadero)} \] El par \( (1, -2) \) es una solución. 12. Para \( -9x + 6y \leq 9 \) con el par \( (-3, -3) \): \[ -9(-3) + 6(-3) \leq 9 \quad \text{(Verdadero)} \] El par \( (-3, -3) \) es una solución. 13. Para \( -x - 4y > 24 \) con el par \( \left(-9, -\frac{4}{3}\right) \): \[ -(-9) - 4\left(-\frac{4}{3}\right) > 24 \quad \text{(Falso)} \] El par \( \left(-9, -\frac{4}{3}\right) \) no es una solución. ### Resumen: - \( (3, 2) \) es solución. - \( (4, 5) \) no es solución. - \( (-1, 6) \) no es solución. - \( (1, -2) \) es solución. - \( (-3, -3) \) es solución. - \( \left(-9, -\frac{4}{3}\right) \) no es solución.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To check whether the ordered pairs are solutions of the given inequalities, we need to substitute the values of \( x \) and \( y \) into each inequality and see if the inequality holds true. 1. **For the inequality \( x + y < 6 \) with the point \( (3, 2) \):** - Substitute: \( 3 + 2 < 6 \) → \( 5 < 6 \) (True!) - So, \( (3, 2) \) is a solution. 2. **For the inequality \( x - y \geq 0 \) with the point \( (4, 5) \):** - Substitute: \( 4 - 5 \geq 0 \) → \( -1 \geq 0 \) (False!) - So, \( (4, 5) \) is not a solution. 3. **For the inequality \( 10x + y > -4 \) with the point \( (-1, 6) \):** - Substitute: \( 10(-1) + 6 > -4 \) → \( -10 + 6 > -4 \) → \( -4 > -4 \) (False!) - So, \( (-1, 6) \) is not a solution. 4. **For the inequality \( x + 4y \leq -5 \) with the point \( (1, -2) \):** - Substitute: \( 1 + 4(-2) \leq -5 \) → \( 1 - 8 \leq -5 \) → \( -7 \leq -5 \) (False!) - So, \( (1, -2) \) is not a solution. 5. **For the inequality \( -9x + 6y \leq 9 \) with the point \( (-3, -3) \):** - Substitute: \( -9(-3) + 6(-3) \leq 9 \) → \( 27 - 18 \leq 9 \) → \( 9 \leq 9 \) (True!) - So, \( (-3, -3) \) is a solution. 6. **For the inequality \( -x - 4y > 24 \) with the point \( \left(-9, -\frac{4}{3}\right) \):** - Substitute: \( -(-9) - 4\left(-\frac{4}{3}\right) > 24 \) → \( 9 + \frac{16}{3} > 24 \) → \( \frac{27}{3} + \frac{16}{3} > 24 \) → \( \frac{43}{3} > 24 \) (True!) - So, \( \left(-9, -\frac{4}{3}\right) \) is a solution. In summary: 1. \( (3, 2) \): Yes 2. \( (4, 5) \): No 3. \( (-1, 6) \): No 4. \( (1, -2) \): No 5. \( (-3, -3) \): Yes 6. \( \left(-9, -\frac{4}{3}\right) \): Yes

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy