Question
upstudy study bank question image url

Question Find the relative error when using the midpoint rule to calculate \( \int_{0}^{2}\left(4 x^{2}+10\right) d x \) using 4 subintervals. Find the relative error as a percent rounded to the nearest hundredth if necessary. Do not round until your final answer and do not include the symbol "\%" in your answer.

Ask by Stephens Reid. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The relative error is approximately 0.54%.

Solution

To find the relative error when using the midpoint rule to calculate the integral \( \int_{0}^{2}\left(4 x^{2}+10\right) d x \) with 4 subintervals, we will follow these steps: 1. **Calculate the exact value of the integral.** 2. **Apply the midpoint rule to estimate the integral.** 3. **Calculate the relative error.** ### Step 1: Calculate the Exact Value of the Integral The exact value of the integral can be calculated as follows: \[ \int_{0}^{2} (4x^2 + 10) \, dx \] First, we find the antiderivative: \[ F(x) = \frac{4}{3}x^3 + 10x \] Now, we evaluate it from 0 to 2: \[ F(2) = \frac{4}{3}(2^3) + 10(2) = \frac{4}{3}(8) + 20 = \frac{32}{3} + 20 = \frac{32}{3} + \frac{60}{3} = \frac{92}{3} \] \[ F(0) = 0 \] Thus, the exact value of the integral is: \[ \int_{0}^{2} (4x^2 + 10) \, dx = F(2) - F(0) = \frac{92}{3} \] ### Step 2: Apply the Midpoint Rule We will use 4 subintervals. The width of each subinterval \( \Delta x \) is: \[ \Delta x = \frac{b - a}{n} = \frac{2 - 0}{4} = \frac{1}{2} \] The midpoints of each subinterval are: - For the first interval \([0, \frac{1}{2}]\): midpoint \( m_1 = \frac{0 + \frac{1}{2}}{2} = \frac{1}{4} \) - For the second interval \([\frac{1}{2}, 1]\): midpoint \( m_2 = \frac{\frac{1}{2} + 1}{2} = \frac{3}{4} \) - For the third interval \([1, \frac{3}{2}]\): midpoint \( m_3 = \frac{1 + \frac{3}{2}}{2} = \frac{5}{4} \) - For the fourth interval \([\frac{3}{2}, 2]\): midpoint \( m_4 = \frac{\frac{3}{2} + 2}{2} = \frac{7}{4} \) Now we evaluate the function at these midpoints: \[ f(m_1) = f\left(\frac{1}{4}\right) = 4\left(\frac{1}{4}\right)^2 + 10 = 4\left(\frac{1}{16}\right) + 10 = \frac{1}{4} + 10 = \frac{41}{4} \] \[ f(m_2) = f\left(\frac{3}{4}\right) = 4\left(\frac{3}{4}\right)^2 + 10 = 4\left(\frac{9}{16}\right) + 10 = \frac{36}{16} + 10 = \frac{36}{16} + \frac{160}{16} = \frac{196}{16} = \frac{49}{4} \] \[ f(m_3) = f\left(\frac{5}{4}\right) = 4\left(\frac{5}{4}\right)^2 + 10 = 4\left(\frac{25}{16}\right) + 10 = \frac{100}{16} + 10 = \frac{100}{16} + \frac{160}{16} = \frac{260}{16} = \frac{65}{4} \] \[ f(m_4) = f\left(\frac{7}{4}\right) = 4\left(\frac{7}{4}\right)^2 + 10 = 4\left(\frac{49}{16}\right) + 10 = \frac{196}{16} + 10 = \frac{196}{16} + \frac{160}{16} = \frac{356}{16} = \frac{89}{4} \] Now we can calculate the estimate using the midpoint rule: \[ \text{Midpoint Estimate} = \Delta x \left( f(m_1) + f(m_2) + f(m_3) + f(m_4) \right) \] \[ = \frac{1}{2} \left( \frac{41}{4} + \frac{49}{4} + \frac{65}{4} + \frac{89}{4} \right) \] \[ = \frac{1}{2} \left( \frac{41 + 49 + 65 + 89}{4} \right) = \frac{1}{2} \left( \frac{244}{4} \right) = \frac{1}{2} \cdot 61 = 30.5 \] ### Step 3: Calculate the Relative Error The relative error is given by: \[ \text{Relative Error} = \left| \frac{\text{Exact Value} - \text{Estimate}}{\text{Exact Value}} \right| \] Substituting the values we have: \[ \text{Exact Value} = \frac{92}{3} \quad \text{and} \quad \text{Estimate} = 30.5 \] Calculating the relative error: \[ \text{Relative Error} = \left| \frac{\frac{92}{3} - 30.5}{\frac{92}{3}} \right| \] First, we convert \( 30.5 \) to a fraction: \[ 30.5 = \frac{61}{2} \] Now we find a common denominator to subtract: \[ \frac{92}{3} - \frac{61}{2} = \frac{184}{6} - \frac{183}{6} = \frac{1}{6} \] Now substituting back into the relative error formula: \[ \text{Relative Error} = \left| \frac{\frac{1}{6}}{\frac{92}{3}} \right| = \left| \frac{1}{6} \cdot \frac{3}{92} \right| = \frac{3}{552} = \frac{1}{184} \] Now, converting this to a percentage: \[ \text{Relative Error as a percent} = \left( \frac{1}{184} \right) \times 100

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find the relative error when using the midpoint rule for the integral \( \int_{0}^{2}\left(4 x^{2}+10\right) d x \) with 4 subintervals, first calculate the exact value of the integral. 1. **Exact value of the integral:** \[ \int_{0}^{2}(4x^2 + 10) \, dx = \left[ \frac{4}{3}x^3 + 10x \right]_{0}^{2} = \left[ \frac{4}{3}(2^3) + 10(2) \right] - \left[ 0 \right] = \frac{32}{3} + 20 = \frac{32}{3} + \frac{60}{3} = \frac{92}{3} \approx 30.67 \] 2. **Using midpoint rule:** The interval \([0, 2]\) is divided into 4 subintervals: \([0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2]\) with a width of \(h = 0.5\). The midpoints are: - \(x_1 = 0.25\) - \(x_2 = 0.75\) - \(x_3 = 1.25\) - \(x_4 = 1.75\) Now compute the midpoint values: \[ f(0.25) = 4(0.25)^2 + 10 = 4(0.0625) + 10 = 10.25 \] \[ f(0.75) = 4(0.75)^2 + 10 = 4(0.5625) + 10 = 12.25 \] \[ f(1.25) = 4(1.25)^2 + 10 = 4(1.5625) + 10 = 15.25 \] \[ f(1.75) = 4(1.75)^2 + 10 = 4(3.0625) + 10 = 22.25 \] The approximate integral using the midpoint rule is: \[ M \approx h \left( f(0.25) + f(0.75) + f(1.25) + f(1.75) \right) = 0.5 \left( 10.25 + 12.25 + 15.25 + 22.25 \right) = 0.5 \times 60 = 30 \] 3. **Relative error:** To find the relative error: \[ \text{Relative Error} = \left| \frac{\text{Exact Value} - \text{Approximate Value}}{\text{Exact Value}} \right| \times 100 \] \[ \text{Relative Error} = \left| \frac{\frac{92}{3} - 30}{\frac{92}{3}} \right| \times 100 = \left| \frac{\frac{92 - 90}{3}}{\frac{92}{3}} \right| \times 100 = \left| \frac{2}{92} \right| \times 100 \approx 2.173913 \approx 2.17 \] Therefore, the relative error is approximately **2.17**.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy