Answer
\( \cot \theta \approx 3.1733810 \)
Solution
To find the approximate value of \( \cot \theta \) given that \( \csc \theta = 3.3272150 \) and \( \theta \) is in quadrant I, we can follow these steps:
1. **Understand the relationship between cosecant and sine:**
\[
\csc \theta = \frac{1}{\sin \theta}
\]
Therefore, we can find \( \sin \theta \):
\[
\sin \theta = \frac{1}{\csc \theta} = \frac{1}{3.3272150}
\]
2. **Calculate \( \sin \theta \):**
\[
\sin \theta = \frac{1}{3.3272150}
\]
3. **Find \( \cos \theta \) using the Pythagorean identity:**
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
First, we calculate \( \sin^2 \theta \):
\[
\sin^2 \theta = \left(\frac{1}{3.3272150}\right)^2
\]
Then, we can find \( \cos^2 \theta \):
\[
\cos^2 \theta = 1 - \sin^2 \theta
\]
4. **Calculate \( \cot \theta \):**
\[
\cot \theta = \frac{\cos \theta}{\sin \theta}
\]
Now, let's perform the calculations step by step.
### Step 1: Calculate \( \sin \theta \)
\[
\sin \theta = \frac{1}{3.3272150}
\]
### Step 2: Calculate \( \sin^2 \theta \)
\[
\sin^2 \theta = \left(\frac{1}{3.3272150}\right)^2
\]
### Step 3: Calculate \( \cos^2 \theta \)
\[
\cos^2 \theta = 1 - \sin^2 \theta
\]
### Step 4: Calculate \( \cot \theta \)
\[
\cot \theta = \frac{\cos \theta}{\sin \theta}
\]
Now, I will perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{3.327215}\)
- step1: Convert the expressions:
\(\frac{1}{\frac{665443}{200000}}\)
- step2: Multiply by the reciprocal:
\(\frac{200000}{665443}\)
Calculate or simplify the expression \( (1/3.3272150)^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\frac{1}{3.327215}\right)^{2}\)
- step1: Divide the numbers:
\(\left(\frac{200000}{665443}\right)^{2}\)
- step2: Use the properties of exponents:
\(\frac{200000^{2}}{665443^{2}}\)
Calculate or simplify the expression \( 1 - 0.090331 \).
Calculate the value by following steps:
- step0: Calculate:
\(1-0.090331\)
- step1: Subtract the numbers:
\(0.909669\)
Calculate or simplify the expression \( \sqrt(0.909669) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{0.909669}\)
- step1: Rewrite the expression:
\(\sqrt{\frac{909669}{1000000}}\)
- step2: Use the properties of radicals:
\(\frac{\sqrt{909669}}{\sqrt{1000000}}\)
- step3: Simplify the expression:
\(\frac{\sqrt{909669}}{1000}\)
Calculate or simplify the expression \( 0.953766/0.300552 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{0.953766}{0.300552}\)
- step1: Convert the expressions:
\(\frac{\frac{476883}{500000}}{\frac{37569}{125000}}\)
- step2: Multiply by the reciprocal:
\(\frac{476883}{500000}\times \frac{125000}{37569}\)
- step3: Reduce the numbers:
\(\frac{158961}{4}\times \frac{1}{12523}\)
- step4: Multiply the fractions:
\(\frac{158961}{4\times 12523}\)
- step5: Multiply:
\(\frac{158961}{50092}\)
Now that we have completed the calculations, let's summarize the steps and results:
1. **Calculate \( \sin \theta \):**
\[
\sin \theta \approx 0.300552
\]
2. **Calculate \( \sin^2 \theta \):**
\[
\sin^2 \theta \approx 0.090331
\]
3. **Calculate \( \cos^2 \theta \):**
\[
\cos^2 \theta = 1 - \sin^2 \theta \approx 1 - 0.090331 \approx 0.909669
\]
4. **Calculate \( \cos \theta \):**
\[
\cos \theta \approx \sqrt{0.909669} \approx 0.953766
\]
5. **Calculate \( \cot \theta \):**
\[
\cot \theta = \frac{\cos \theta}{\sin \theta} \approx \frac{0.953766}{0.300552} \approx 3.173381
\]
Thus, the approximate value of \( \cot \theta \) is:
\[
\cot \theta \approx 3.173381
\]
### Final Answer:
A. \( \cot \theta \approx 3.1733810 \) (rounded to seven decimal places)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution