Question
upstudy study bank question image url

\( \lim _ { x \rightarrow \infty } \ln ( \frac { x ^ { 2 } + 3 } { x ^ { 2 } + 4 x } ) ^ { \frac { x ^ { 2 } - 1 } { x } } \)

Ask by Ruiz Bernard. in Ecuador
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El límite es −4.

Solution

Vamos a calcular el límite   L = limₓ→∞ ln[( (x² + 3)/(x² + 4x) )^((x²−1)/x)]. Observa que, utilizando la propiedad de los logaritmos,   ln(a^b) = b · ln(a), podemos escribir:   L = limₓ→∞ ( (x² − 1)/x ) · ln[(x² + 3)/(x² + 4x) ]. Paso 1. Simplificar el exponente:   (x² − 1)/x = x − 1/x. Para x → ∞, el término −1/x es despreciable y el comportamiento está dominado por x. Paso 2. Reescribir el logaritmo: Dividimos el numerador y el denominador dentro del logaritmo por x²:   (x² + 3)/(x² + 4x) = [1 + 3/x²] / [1 + 4/x]. Por lo tanto:   ln[(x² + 3)/(x² + 4x)] = ln[1 + 3/x²] − ln[1 + 4/x]. Paso 3. Aproximación mediante series de Taylor: Recordemos que para z pequeño, ln(1 + z) ≈ z − z²/2. Así:   ln(1 + 3/x²) ≈ 3/x²,   ln(1 + 4/x) ≈ 4/x − (4/x)²/2 = 4/x − 8/x². Entonces, la diferencia es:   ln[(x² + 3)/(x² + 4x)] ≈ 3/x² − [4/x − 8/x²] = −4/x + 11/x². Paso 4. Multiplicar por el exponente: Recordando que (x − 1/x) es el exponente, tenemos:   (x − 1/x) · [−4/x + 11/x²] = x·(−4/x) + términos menores = −4 + términos que tienden a 0 cuando x → ∞. En detalle:   x*(−4/x) = −4,   x*(11/x²) = 11/x → 0,   (−1/x)*(−4/x) = 4/x² → 0,   (−1/x)*(11/x²) = −11/x³ → 0. Paso 5. Conclusión: Por lo tanto, el límite es:   L = −4. Respuesta final: El límite es −4.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the limit \[ \lim _ { x \rightarrow \infty } \ln \left( \frac { x ^ { 2 } + 3 } { x ^ { 2 } + 4 x } \right) ^ { \frac { x ^ { 2 } - 1 } { x } }, \] we can simplify the expression. First, we'll simplify the argument of the logarithm: \[ \frac { x^2 + 3 } { x^2 + 4x } = \frac { 1 + \frac{3}{x^2} } { 1 + \frac{4}{x} }. \] As \( x \) approaches infinity, both \(\frac{3}{x^2}\) and \(\frac{4}{x}\) approach 0. Therefore, \[ \frac { x^2 + 3 } { x^2 + 4x } \to \frac{1 + 0}{1 + 0} = 1. \] Since the limit of the fraction approaches 1, the logarithm of that fraction will approach 0: \[ \ln \left( \frac { x ^ { 2 } + 3 } { x ^ { 2 } + 4 x } \right) \to \ln(1) = 0. \] Now let's consider the exponent \(\frac{x^2 - 1}{x}\): \[ \frac{x^2 - 1}{x} = x - \frac{1}{x}. \] As \( x \) approaches infinity, \( x - \frac{1}{x} \) approaches \( x \). Putting this all together, we have: \[ \ln \left( \frac { x ^ { 2 } + 3 } { x ^ { 2 } + 4 x } \right)^{\frac{x^2 - 1}{x}} = \left( x - \frac{1}{x} \right) \ln \left(\frac { x ^ { 2 } + 3 } { x ^ { 2 } + 4 x }\right). \] The logarithm approaches 0, and when this is multiplied by \( x - \frac{1}{x} \) (which approaches \( x \)), we find ourselves looking at \( \infty \cdot 0 \), which is an indeterminate form. To resolve this, we can consider the limit: \[ = \lim_{x \to \infty} (x - \frac{1}{x}) \ln \left( \frac{1 + \frac{3}{x^2}}{1 + \frac{4}{x}} \right). \] Using the Taylor series expansion for \(\ln(1 + y) \approx y\) when \( y \) is small, we can approximate: \[ \ln \left( \frac{1 + \frac{3}{x^2}}{1 + \frac{4}{x}} \right) \approx \ln \left( 1 - \frac{4}{x} + O\left(\frac{1}{x^2}\right) \right) \approx -\frac{4}{x}. \] Thus we have: \[ = \lim_{x \to \infty} (x - \frac{1}{x}) \left(-\frac{4}{x}\right) \approx -4 \lim_{x \to \infty} \left(1 - \frac{1}{x^2}\right) = -4. \] Through all this simplification, our original limit resolves to: \[ \boxed{-4}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy