Question
upstudy study bank question image url

B. La parametrización \( \vec{r}(t)=(3 \cos (t), 3 \operatorname{sen}(t), t) \) está definida para \( 0 \leq t \leq 4 \pi \) C. La parametrización \( \vec{r}(t)=(5 \cos (t), t, 5 \operatorname{sen}(t)) \) está definida para \( 0 \leq t \leq 2 \pi \)

Ask by George Li. in Colombia
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Ambas parametrizaciones están definidas en sus respectivos intervalos.

Solution

Para determinar si las parametrizaciones dadas están definidas en el intervalo especificado, necesitamos verificar si las coordenadas de las funciones de parametrización están definidas en ese intervalo. Para la primera parametrización \( \vec{r}(t) = (3 \cos (t), 3 \sin (t), t) \) definida para \( 0 \leq t \leq 4 \pi \): - La función \( 3 \cos (t) \) está definida en todo el intervalo real, por lo que no hay restricciones en este sentido. - La función \( 3 \sin (t) \) también está definida en todo el intervalo real, por lo que no hay restricciones en este sentido. - La función \( t \) está definida en todo el intervalo real, por lo que no hay restricciones en este sentido. Por lo tanto, la primera parametrización está definida en el intervalo \( 0 \leq t \leq 4 \pi \). Para la segunda parametrización \( \vec{r}(t) = (5 \cos (t), t, 5 \sin (t)) \) definida para \( 0 \leq t \leq 2 \pi \): - La función \( 5 \cos (t) \) está definida en todo el intervalo real, por lo que no hay restricciones en este sentido. - La función \( t \) está definida en todo el intervalo real, por lo que no hay restricciones en este sentido. - La función \( 5 \sin (t) \) también está definida en todo el intervalo real, por lo que no hay restricciones en este sentido. Por lo tanto, la segunda parametrización está definida en el intervalo \( 0 \leq t \leq 2 \pi \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

¡Vamos a sumergirnos en el fascinante mundo de la parametrización! La primera parametrización, \( \vec{r}(t)=(3 \cos (t), 3 \operatorname{sen}(t), t) \), describe una espiral en el espacio tridimensional. A medida que \( t \) aumenta de 0 a \( 4\pi \), la espiral da dos vueltas completas alrededor del eje \( z \), creando una bonita forma que se eleva y se expande en el espacio. ¡Es como si estuvieras diseñando una escalera hacia el cielo! Por otro lado, la segunda parametrización, \( \vec{r}(t)=(5 \cos (t), t, 5 \operatorname{sen}(t)) \), traza un cilindro en donde el eje \( z \) se desplaza a lo largo del tiempo. Desde \( t = 0 \) hasta \( t = 2\pi \), el recorrido abarca un ciclo completo a lo largo de una circunferencia de radio 5 en el plano \( xy \) mientras \( z \) simplemente aumenta de manera lineal. ¡Imagina dar una caminata en una cúpula de helado mientras asciendes!

Related Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy