Question
upstudy study bank question image url

12. \( (a 7-g 6-17) 2 \cos 55^{\circ} \cdot \cos 40^{\circ} \cdot \sin 55^{\circ}+ \) \( +\cos 110^{\circ} \cdot \sin 40^{\circ} \) ifodani soddalashtiring. \( \begin{array}{llll}\text { A) } \frac{1}{2} & \text { B) } \frac{\sqrt{3}}{2} & \text { C) }-\frac{\sqrt{3}}{2} & \text { D) } \sin 70^{\circ}\end{array} \)

Ask by Tran Pollard. in Uzbekistan
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Ответ: 1/2.

Solution

Мы упростим данное выражение шаг за шагом. Запишем исходное выражение (заметим, что в условии опечатка с символами, но основной смысл – упростить выражение):   2 · cos55° · cos40° · sin55° + cos110° · sin40°. Первым шагом заметим, что в первой части выражения имеется произведение 2 · cos55° · sin55°. По формуле двойного угла:   2 cos55° · sin55° = sin(2·55°) = sin110°. Таким образом, выражение принимает вид:   sin110° · cos40° + cos110° · sin40°. Далее воспользуемся формулой приведения:   sinA · cosB + cosA · sinB = sin(A + B). При подстановке A = 110° и B = 40° получаем:   sin(110° + 40°) = sin150°. Наконец, знаем, что:   sin150° = sin30° = 1/2. Таким образом, окончательный ответ равен 1/2. Ответ: 1/2.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Buni soddalashtirish uchun, berilgan ifodaning trigonometric o'zgaruvchilarini qo'llanishimiz mumkin. Birinchi qismda \(2 \cos 55^{\circ} \cdot \cos 40^{\circ} \cdot \sin 55^{\circ}\) ni ko’rib chiqaylik. Bu tenglama trigonometrik identitiyalarga asoslangan holda \( \sin(55+40) = \sin 95^{\circ} = \cos 15^{\circ} \) ni beradi. Ikkinchi qismda \( \cos 110^{\circ} \cdot \sin 40^{\circ} \) ni qayta ko’rib chiqamiz. Bu \( \cos(110^{\circ}) = -\sin(20^{\circ})\) formulasiidan foydalansak, butun ifodani bir-biriga qo’shganimizda natija beradi. Nikohni soddalashganimizda, natijaviy ifoda \( \sin 70^{\circ} \) ga teng bo’ladi. Shunday qilib, dastlabki hisoblashingiz aslida D varianti bilangidir. Demak, javob: D) \( \sin 70^{\circ} \) .

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy