Question
upstudy study bank question image url

H/w ar \( x-z<2 x+5 \) क- \( -4 x+1 \leqslant 2 \) को \( -2 x+3>10 \) aet the velue of \( x \)

Ask by Klein Kelley. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

There are no values of \( x \) that satisfy all the given inequalities.

Solution

To solve the inequalities step by step, we will address each inequality one by one. ### 1. Solve the first inequality: \[ x - z < 2x + 5 \] Rearranging the inequality: \[ x - 2x < 5 + z \] \[ -x < 5 + z \] Multiplying both sides by -1 (remember to reverse the inequality): \[ x > -5 - z \] ### 2. Solve the second inequality: \[ -4x + 1 \leq 2 \] Rearranging the inequality: \[ -4x \leq 2 - 1 \] \[ -4x \leq 1 \] Dividing both sides by -4 (again, reverse the inequality): \[ x \geq -\frac{1}{4} \] ### 3. Solve the third inequality: \[ -2x + 3 > 10 \] Rearranging the inequality: \[ -2x > 10 - 3 \] \[ -2x > 7 \] Dividing both sides by -2 (reverse the inequality): \[ x < -\frac{7}{2} \] ### Summary of the inequalities: 1. \( x > -5 - z \) 2. \( x \geq -\frac{1}{4} \) 3. \( x < -\frac{7}{2} \) Now, we need to find the values of \( x \) that satisfy all three inequalities. ### Finding the intersection: - From the second inequality, \( x \geq -\frac{1}{4} \). - From the third inequality, \( x < -\frac{7}{2} \) which is approximately -3.5. Since \( -\frac{1}{4} \) (which is 0.25) is greater than -3.5, there are no values of \( x \) that can satisfy all three inequalities simultaneously. ### Conclusion: There are no values of \( x \) that satisfy all the given inequalities.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

चलो इन असमानताओं को एक-एक करके हल करते हैं और \( x \) का मान निकालते हैं। 1. \( x - z < 2x + 5 \) को हल करने के लिए, हम \( x \) और \( z \) को एक तरफ लाते हैं: \[ -z < 2x - x + 5\\ -z < x + 5\\ z > -x - 5 \] 2. दूसरी असमानता \( -4x + 1 \leqslant 2 \) को हल करते हैं: \[ -4x \leqslant 1\\ -4x \leqslant 1 - 1\\ -4x \leqslant 1\\ x \geqslant -\frac{1}{4} \] 3. तीसरी असमानता \( -2x + 3 > 10 \) को हल करते हैं: \[ -2x > 10 - 3\\ -2x > 7\\ x < -\frac{7}{2} \] इस तरह, हमारे पास असमानताएँ हैं: 1. \( z > -x - 5 \) 2. \( x \geqslant -\frac{1}{4} \) 3. \( x < -\frac{7}{2} \) इन असमानताओं का संगम हमें यह बताता है कि कोई ऐसा \( x \) नहीं है जो सभी शर्तों को पूरी करता है। इसलिए, \( x \) के लिए कोई मान पाना संभव नहीं है।

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy