Question
upstudy study bank question image url

Factor the trinomial. \( 14 a^{3}-33 a^{2}+18 a \) Select the correct choice below and, if necessary, fill in the answer box within your choice. A. The answer is B. The trinomial is not factorable.

Ask by Stanley Dunn. in the United States
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The trinomial factors to \(a(2a-3)(7a-6)\).

Solution

Factor the expression \( 14a^3-33a^2+18a \). Factor the expression by following steps: - step0: Factor: \(14a^{3}-33a^{2}+18a\) - step1: Rewrite the expression: \(a\times 14a^{2}-a\times 33a+a\times 18\) - step2: Factor the expression: \(a\left(14a^{2}-33a+18\right)\) - step3: Factor the expression: \(a\left(2a-3\right)\left(7a-6\right)\) The trinomial \(14a^{3}-33a^{2}+18a\) can be factored as \(a(2a-3)(7a-6)\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To factor the trinomial \( 14 a^{3}-33 a^{2}+18 a \), first, we can factor out the greatest common factor, which is \( a \): \( a(14 a^{2} - 33 a + 18) \). Now, we need to factor the quadratic \( 14 a^{2} - 33 a + 18 \). We can look for two numbers that multiply to \( 14 \times 18 = 252 \) and add up to \( -33 \). After testing combinations, we find that \( -9 \) and \( -28 \) work: Thus, rewrite the quadratic as: \( 14 a^{2} - 9 a - 24 a + 18 \). Then, group and factor by grouping: \( (14 a^{2} - 9 a) - (24 a - 18) \) which becomes \( 7a(2a - 9) - 2(2a - 9) \). Now we can factor it as: \( (2a - 9)(7a - 2) \). Putting it all together, the fully factored form of the original trinomial is: \( a(2a - 9)(7a - 2) \). So, the answer is: A. The answer is \( a(2a - 9)(7a - 2) \).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy