Question
upstudy study bank question image url

a) \( \int x \operatorname{sen}\left(\frac{x}{3}\right) d x= \)

Ask by Wells Tucker. in Argentina
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral de \(x \sin\left(\frac{x}{3}\right)\) es \(-3x\cos\left(\frac{x}{3}\right) + 9\sin\left(\frac{x}{3}\right) + C\).

Solution

Calculate or simplify the expression \( \int x \sin\left(\frac{x}{3}\right) dx \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int x\sin\left(\frac{x}{3}\right) dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=x\\&dv=\sin\left(\frac{x}{3}\right)dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=dx\\&dv=\sin\left(\frac{x}{3}\right)dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=dx\\&v=-3\cos\left(\frac{1}{3}x\right)\end{align}\) - step4: Substitute the values into formula: \(x\left(-3\cos\left(\frac{1}{3}x\right)\right)-\int 1\times \left(-3\cos\left(\frac{1}{3}x\right)\right) dx\) - step5: Calculate: \(-3x\cos\left(\frac{1}{3}x\right)-\int -3\cos\left(\frac{1}{3}x\right) dx\) - step6: Evaluate the integral: \(-3x\cos\left(\frac{1}{3}x\right)+9\sin\left(\frac{1}{3}x\right)\) - step7: Add the constant of integral C: \(-3x\cos\left(\frac{1}{3}x\right)+9\sin\left(\frac{1}{3}x\right) + C, C \in \mathbb{R}\) La integral de \(x \sin\left(\frac{x}{3}\right)\) con respecto a \(x\) es igual a \(-3x\cos\left(\frac{x}{3}\right) + 9\sin\left(\frac{x}{3}\right) + C\), donde \(C\) es una constante real.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve the integral \( \int x \sin\left(\frac{x}{3}\right) dx \), we can use integration by parts. Let \( u = x \) and \( dv = \sin\left(\frac{x}{3}\right) dx \). Then, \( du = dx \) and \( v = -3 \cos\left(\frac{x}{3}\right) \) (since we integrate \( \sin\left(\frac{x}{3}\right) \) to get \(-3\cos\left(\frac{x}{3}\right)\)). Applying integration by parts: \[ \int x \sin\left(\frac{x}{3}\right) dx = uv - \int v \, du \] This gives us: \[ = -3x \cos\left(\frac{x}{3}\right) - \int (-3 \cos\left(\frac{x}{3}\right)) dx \] Now we integrate \( -3 \cos\left(\frac{x}{3}\right) \): \[ = -3x \cos\left(\frac{x}{3}\right) + 9 \sin\left(\frac{x}{3}\right) + C \] Thus, the final result for the integral is: \[ \int x \sin\left(\frac{x}{3}\right) dx = -3x \cos\left(\frac{x}{3}\right) + 9 \sin\left(\frac{x}{3}\right) + C \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy