(2) Hence show that \( \sin 43^{\circ}+\sin 17^{\circ}=\cos 13^{\circ} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To show that \( \sin 43^{\circ} + \sin 17^{\circ} = \cos 13^{\circ} \), we can utilize the sine addition formula. First, recall that \( \sin(90^\circ - x) = \cos x \). Thus, we can recast \( \cos 13^\circ \) as \( \sin(90^\circ - 13^\circ) = \sin 77^\circ \). Now, we know that: \[ \sin 43^\circ + \sin 17^\circ = 2 \sin\left(\frac{43^\circ + 17^\circ}{2}\right) \cos\left(\frac{43^\circ - 17^\circ}{2}\right) \] Calculating the angles gives: \[ \frac{43^\circ + 17^\circ}{2} = \frac{60^\circ}{2} = 30^\circ \] and \[ \frac{43^\circ - 17^\circ}{2} = \frac{26^\circ}{2} = 13^\circ \] Thus, we can express this as: \[ \sin 43^\circ + \sin 17^\circ = 2 \sin(30^\circ) \cos(13^\circ) \] Knowing that \( \sin(30^\circ) = \frac{1}{2} \), we find: \[ \sin 43^\circ + \sin 17^\circ = 2 \cdot \frac{1}{2} \cdot \cos(13^\circ) = \cos(13^\circ) \] This proves the identity \( \sin 43^{\circ} + \sin 17^{\circ} = \cos 13^{\circ} \).