Question
upstudy study bank question image url

(2) Hence show that \( \sin 43^{\circ}+\sin 17^{\circ}=\cos 13^{\circ} \)

Ask by Delgado Elliott. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( \sin 43^{\circ} + \sin 17^{\circ} = \cos 13^{\circ} \)

Solution

To show that \( \sin 43^{\circ} + \sin 17^{\circ} = \cos 13^{\circ} \), we can use the sine addition formula and some trigonometric identities. ### Step 1: Use the sine addition formula The sine addition formula states that: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] In our case, let \( A = 43^{\circ} \) and \( B = 17^{\circ} \). ### Step 2: Calculate \( A + B \) and \( A - B \) 1. Calculate \( A + B \): \[ A + B = 43^{\circ} + 17^{\circ} = 60^{\circ} \] 2. Calculate \( A - B \): \[ A - B = 43^{\circ} - 17^{\circ} = 26^{\circ} \] ### Step 3: Substitute into the sine addition formula Now substitute \( A + B \) and \( A - B \) into the sine addition formula: \[ \sin 43^{\circ} + \sin 17^{\circ = 2 \sin\left(\frac{60^{\circ}}{2}\right) \cos\left(\frac{26^{\circ}}{2}\right) \] This simplifies to: \[ \sin 43^{\circ} + \sin 17^{\circ} = 2 \sin(30^{\circ}) \cos(13^{\circ}) \] ### Step 4: Evaluate \( \sin(30^{\circ}) \) We know that: \[ \sin(30^{\circ}) = \frac{1}{2} \] ### Step 5: Substitute back into the equation Substituting this value back, we have: \[ \sin 43^{\circ} + \sin 17^{\circ} = 2 \cdot \frac{1}{2} \cos(13^{\circ}) = \cos(13^{\circ}) \] ### Conclusion Thus, we have shown that: \[ \sin 43^{\circ} + \sin 17^{\circ} = \cos 13^{\circ} \] This completes the proof.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To show that \( \sin 43^{\circ} + \sin 17^{\circ} = \cos 13^{\circ} \), we can utilize the sine addition formula. First, recall that \( \sin(90^\circ - x) = \cos x \). Thus, we can recast \( \cos 13^\circ \) as \( \sin(90^\circ - 13^\circ) = \sin 77^\circ \). Now, we know that: \[ \sin 43^\circ + \sin 17^\circ = 2 \sin\left(\frac{43^\circ + 17^\circ}{2}\right) \cos\left(\frac{43^\circ - 17^\circ}{2}\right) \] Calculating the angles gives: \[ \frac{43^\circ + 17^\circ}{2} = \frac{60^\circ}{2} = 30^\circ \] and \[ \frac{43^\circ - 17^\circ}{2} = \frac{26^\circ}{2} = 13^\circ \] Thus, we can express this as: \[ \sin 43^\circ + \sin 17^\circ = 2 \sin(30^\circ) \cos(13^\circ) \] Knowing that \( \sin(30^\circ) = \frac{1}{2} \), we find: \[ \sin 43^\circ + \sin 17^\circ = 2 \cdot \frac{1}{2} \cdot \cos(13^\circ) = \cos(13^\circ) \] This proves the identity \( \sin 43^{\circ} + \sin 17^{\circ} = \cos 13^{\circ} \).

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy