Diberi bahawa \( \overrightarrow{A C}=2 \underline{a}, \overrightarrow{A B}=2 \underline{b}, \overrightarrow{A P}=\frac{2}{3} \overrightarrow{A C} \) dan \( \overrightarrow{P Q}=-\frac{8}{15} \underline{a}+\frac{6}{5} \underline{b} \). It is given that \( \overrightarrow{A C}=2 \underline{a}, \overrightarrow{A B}=2 \underline{b}, \overrightarrow{A P}=\frac{2}{3} \overrightarrow{A C} \) and \( \overrightarrow{P Q}=-\frac{8}{15} \underline{a}+\frac{6}{5} \underline{b} \). (a) Garis lurus \( A B \) dipanjangkan ke titik \( R \) dengan keadan \( \overrightarrow{A R}=\lambda \overrightarrow{A B} \), dan \( \lambda \) ialah pemalar. Ungkapkan \( \overrightarrow{P R} \) dalam sebutan \( \lambda \), \( \underline{a} \) dan \( \underline{b} \). Straight line \( A B \) is being extended to the point \( R \) such that \( \overrightarrow{A R}=\lambda \overrightarrow{A B} \), and \( \lambda \) is a constant. Express \( \overrightarrow{P R} \) in terms of \( \lambda, \underline{a} \) and \( \underline{b} \). [2 markah \( ] \) (b) Diberi bahawa \( P, Q \) dan \( R \) adalah segaris, cari It is given that \( P, Q \) and \( R \) are collinear, find (i) nilai \( \lambda \), (ii) nisbah \( P Q: Q R \). (i) ralue of \( \lambda \),
Upstudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…