Bush Campos
01/01/2023 · Elementary School

Hausaufgabe 36: (Komplexe Exponential- und Logarithmusfunktion) (2+4 \( =6 \) Punkte) a) Es seien \( z_{1}=\ln (2)+i \frac{\pi}{2} \) und \( z_{2}=-3+i \frac{\pi}{6} \) gegeben. Bringen Sie die beiden komplexen Zahlen \( w_{\ell}=e^{z_{\ell}} \) mit \( \ell \in\{1,2\} \) in die Standardform \( w_{\ell}=x_{\ell}+i y_{\ell} \), indem Sie jeweils den Real- und Imaginärteil von \( w_{\ell} \) bestimmen. b) Drücken Sie die komplexen Zahlen \( z_{3}=\ln (i e) \) und \( z_{4}=\ln (\sqrt{3}+i) \) sowohl in der Stan- dardform als auch in der Polarform aus. Es genügt dabei, den Hauptwert anzugeben. Hinweise: Der Wert von \( \sin \left(\frac{\pi}{6}\right) \) ist Ihnen aus (2.7) der Vorlesung bekannt. Weiterhin gilt \( \cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \) und daher \( \arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6} \)

Upstudy ThothAI Solution

Tutor-Verified Answer

Quick Answer

- \( w_1 = 0 + 2i \) - \( w_2 = \frac{\sqrt{3}}{2} e^{-3} + i \cdot \frac{1}{2} e^{-3} \) - \( z_3 = 1 + i \frac{\pi}{2} \) - \( z_4 = \ln(2) + i \frac{\pi}{6} \)

Step-by-step Solution

Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions