Delgado Reyes
10/03/2023 · Senior High School

Exercice 3 : Suites numériques (4 points) On considère la suite numérique \( \left(v_{n}\right) \) définie par: 1-a) Démontrer par récurrence que, pour tout entier na- turel \( n: 0<v_{n}<3 \). b) Démontrer que, pour tout entier naturel \( n \) : \( v_{n+1}-v_{n}=\frac{\left(3-v_{n}\right)^{2}}{6-v_{n}} \). c) Démontrer que la suite \( \left(v_{n}\right) \) est convergente. 2. On considère la suite \( \left(w_{n}\right) \) définie par: \( w_{n}=\frac{1}{v_{n}-3} \). a) Démontrer que \( \left(w_{n}\right) \) est une suite arithmétique de raison \( -J / 3 \). b) En déduire l'expression de \( \left(w_{n}\right) \), puis celle de \( \left(v_{n}\right) \) en fonction de \( n \). c) Déterminer la limite de la suite \( \left(v_{n}\right) \).

Upstudy ThothAI Solution

Tutor-Verified Answer

Quick Answer

1-a) Pour tout \( n \in \mathbb{N} \), \( 0 < v_n < 3 \). 1-b) \( v_{n+1} - v_n = \frac{(3 - v_n)^2}{6 - v_n} \). 1-c) La suite \( \left(v_{n}\right) \) est convergente.

Step-by-step Solution

Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions