1. Consider the bases \( B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\} \) and \( B^{\prime}=\left\{\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}\right\} \) for \( R^{2} \), where \[ \mathbf{u}_{1}=\left[\begin{array}{l}2 \\ 2\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}4 \\ -1\end{array}\right], \mathbf{u}_{1}^{\prime}=\left[\begin{array}{l}1 \\ 3\end{array}\right], \quad \mathbf{u}_{2}^{\prime}=\left[\begin{array}{r}-1 \\ -1\end{array}\right] \] (a) Find the transition matrix from \( B^{\prime} \) to \( B \). (b) Find the transition matrix from \( B \) to \( B^{\prime} \). (c) Compute the coordinate vector \( [\mathbf{w}]_{B} \), where and use (12) to compute \( [\mathbf{w}]_{B^{\prime}} \). (d) Check your work by computing \( [\mathbf{w}]_{B^{\prime}} \) directly.
Upstudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…