Page Gardner
05/11/2023 · High School

On prend pour première approximation de \( \alpha \) l'abscisse \( x_{1} \) du point d'in- tersection de la tangente au point \( (b, f(b)) \) avec l'axe \( (O x) \), puis on itère la procédure sur \( \left[a, x_{1}\right] \) pour obtenir \( \mathrm{x}_{2} \ldots \) 2. Montrer que \( x_{1}=b-\frac{f(b)}{f^{\prime}(b)} \). 3. Montrer que \( \frac{\mathrm{f}(\mathrm{b})-\mathrm{f}\left(\mathrm{x}_{1}\right)}{\mathrm{b}-\mathrm{x}_{1}} \leq \mathrm{f}^{\prime}(\mathrm{b}) \). 4. En déduire que \( f\left(x_{1}\right) \geq 0 \), puis \( x_{1} \geq \alpha \). \( \quad \) Ceci nous ramène à considérer la suite définie par \( \mathrm{x}_{0}=\mathrm{b} \) et la relation: \( \forall \mathrm{n} \in \mathbb{N} \mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{f}\left(\mathrm{s}_{\mathrm{n}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)} \) En introduisant la fonction \( g: x \rightarrow x-\frac{f(x)}{f \prime(x)} \) on peut écrire \( x_{n+1}= \) \( g\left(x_{n}\right) \). 5. Etudier la monotonie de g sur \( [\mathrm{a}, \mathrm{b}] \) et montrer que \( \mathrm{g}([\alpha, \mathrm{b}]) \subset[\alpha, \mathrm{b}] \).

Upstudy ThothAI Solution

Tutor-Verified Answer

Quick Answer

1. \( x_1 = b - \frac{f(b)}{f'(b)} \) 2. \( \frac{f(b) - f(x_1)}{b - x_1} \leq f'(b) \) 3. \( f(x_1) \geq 0 \), then \( x_1 \geq \alpha \) 4. \( g([\alpha, b]) \subset [\alpha, b] \)

Step-by-step Solution

Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions