Let \( \vec{a} \) and \( b \) be the vectors given by \( \vec{a}=\langle 2,0,-1\rangle \) and \( b=\langle 1,-1,3\rangle \). (1) Compute (i) \( \|\vec{a}\| \) and \( \|\vec{b}\| \) (ii) \( \vec{a} \cdot \vec{a}, \vec{a} \cdot \vec{b} \) in two different ways. (iii) \( \vec{a} \times \vec{b} \) and \( \vec{b} \times \vec{b} \) (2) Assume that \( \theta \) is the angle between the two vectors \( \vec{a} \) and \( \vec{b} \). Write down \( \cos \theta \) in terms of \( \vec{a} \cdot \vec{b} \) and \( \|\vec{a}\| \) and \( \|\vec{b}\| \). Deduce \( \cos \theta \) and find the angle \( \theta \) between the two vectors. (3) Find an equation of the plane \( P \) containing \( \vec{a} \) and \( \vec{b} \)
Upstudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…