Use a \( \chi^{2} \)-test to test the claim \( \sigma<44 \) at the \( \alpha=0.05 \) significance level using sample statistics \( s=40.3 \) and \( n=19 \). Assume the population is normally distributed. Identify the null and alternative hypotheses. \( \begin{array}{ll}\text { A. } H_{0}: \sigma>44 & \text { B. } H_{0}: \sigma \geq 44 \\ H_{a}: \sigma \leq 44 & H_{a}: \sigma<44 \\ \text { C. } H_{0}: \sigma \leq 44 & H_{0}: \sigma<44 \\ H_{a}: \sigma>44 & H_{a}: \sigma \geq 44\end{array} \) \( \begin{array}{ll}\text { Identify the standardized test statistic. } & \text { D. } \\ \square \text { (Round to three decimal places as needed.) } & \\ \text { Identify the critical value(s). }\end{array} \)
Upstudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…