Q:
(a) Let one parametric equation be \( x=t \). Find the parametric equation for \( y \).
\( y=t^{2}+4 t \) for \( t \) in \( (-\infty, \infty) \)
(Do not factor.)
(b) Let one parametric equation be \( x=t-2 \). Find the parametric equation for \( y \).
\( y=\square \) for \( t \) in \( (-\infty, \infty) \)
(Simplify your answer.)
Q:
\( x=11 \cos t, y=11 \sin t \)
The rectangular equation for the plane curve is \( \square \).
Q:
\( x=\sqrt{t}, y=2 t-3 \) for \( t \) in \( [0,4] \)
The equivalent rectangular equation is \( \square \) for \( x \) over the interval \( \square \).
(Simplify your answers.)
Q:
If a polynomial function has a degree of 4 and a positive leading coefficient, what can you say about its end behavior?
Q:
3. Un granjero tiene 200 metros de cerca con la
cual puede delimitar un terreno rectangular. Un
lado del terreno puede aprovechar una cerca ya
existente. ¿Cuál es el área máxima que puede
cercarse?
Q:
3. Un granjero tiene 200 metros de cerca con la
cual puede delimitar un terreno rectangular. Un
lado del terreno puede aprovechar una cerca ya
existente. ¿Cuál es el área máxima que puede
cercarse?
Q:
Which of the following equations could be the equation
of the horizontal asymptote of
\( y=\frac{x-3}{x^{2}-6 x-7} \)
Select one:
a. \( y=-1 \)
b. \( y=0 \)
c. \( y=3 \)
d. There is no horizontal asymptote.
Q:
The exponential model \( \mathrm{A}=905 e^{0.009 \mathrm{t}} \) describes the population, A , of a country in millions, t years after 2003. Use the
model to determine the population of the country in 2003 .
The population of the country in 2003 was \( \square \) million.
Q:
\( 1 \leftarrow \) The formula \( A=21.2 e^{0.0413 t} \) models the population of a US state, A , in millions, t years after 2000 .
a. What was the population of the state in 2000 ?
b. When will the population of the state reach 29.8 million?
a. In 2000 , the population of the state was \( \square \) million.
Q:
С1. Найдите область определения функции.
\[ f(x)=\sqrt{9-x^{2}}-\frac{5 x-2}{\sqrt{x^{2}+3 x-4}} \]
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit