Q:
Express \( (2 y)^{\frac{3}{2}} \) in radical form.
\( 2 \sqrt{y^{3}} \)
\( \sqrt{(2 y)^{3}} \)
\( \sqrt{2 y^{3}} \)
\( \sqrt[3]{(2 y)^{2}} \)
Q:
6. Suma las siguientes fracciones usando
método M.C.M:
a. \( \frac{3}{4}+\frac{5}{7}+\frac{6}{8} \)
Q:
46. La somma delle basi di un trapezio misu
61 m e l'area è \( 366 \mathrm{~m}^{2} \). Calcola la misur
dell'altezza.
Q:
Simplify by factoring.
\( \sqrt{720} \)
Q:
\( 1 \leftarrow \quad \begin{array}{l}\text { Compound inequalities are solved using the properties of inequality. Solve the given compound inequality and state the solution in set-builder notation. } \\ -4<n+31<16 \\ \text { Express the solution set in set-builder notation. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. }\end{array} \)
Q:
Write \( \sqrt[3]{x^{2}} \) as an expression with a rational exponent.
\( x^{\frac{3}{2}} \)
\( \frac{x^{2}}{3} \)
\( x^{2 \cdot 3} \)
\( x^{\frac{2}{3}} \)
Q:
\( \int \frac { x ^ { 2 } - 2 x \sin 3 x ^ { 2 } } { x ^ { 3 } + \cos 3 x ^ { 2 } } d x \)
Q:
A circle has a diameter of 12 inches. What is its area?
Q:
\( 1.1 \quad \) Given: \( Q=(x+y) \ln \left(\frac{x}{y}\right) \), show that
\( x \frac{\partial Q}{\partial}+y \frac{\partial Q}{2}=Q \)
Q:
3. Comprobar que cada una de las funciones siguientes satisfacen las hipótesis del teorema del va-
lor medio en el intervalo indicado. A continuación determine todos los números \( c \) que satisfacen
la conclusión del teorema.
\[ \begin{array}{ll}\text { i) } f(x)=3 x^{2}+2 x+5, x \in[-1,1] & \text { ii) } f(x)=\frac{x}{x+2}, x \in[1,4]\end{array} \]
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit