Q:
TVUN is a parallelogram.
What is the length of ON?
A company stores boxes in a room with a length of 5 m , breadth of 3 m and
height of 2 m .
How many boxes can fit in this room if each box is 10 cm long. 8 cm wide
and 4 cm high?
Q:
Simplify.
\[ \sqrt[3]{\frac{1}{216}} \]
Q:
6. Determine el valor numérico de
\[ P=\frac{\tan 0^{\circ}-\csc 270^{\circ}}{\cos 90^{\circ}-\sec 180^{\circ}} \]
\( \begin{array}{lll}\text { A) } 2 & \text { B) }-1 & \text { C) }-2 \\ \text { D) } 1 & \text { E) } 1 / 2 & \end{array} \)
Q:
Question
Simplify: \( \sqrt[3]{256 d^{4}} \)
Provide your answer below
Q:
(3.) \( -4 x+3=-11 \)
Q:
28 La amplitud térmica es la diferencia entre la temperatura máxima y la mínima registrada en un día.
Calcular las siguientes amplitudes térmicas.
a) Temperatura máxima: \( 8^{\circ} \mathrm{C} \) y temperatura minima: \( 3^{\circ} \mathrm{C} \longrightarrow \) Amplitud térmica:
b) Temperatura máxima: \( 5^{\circ} \mathrm{C} \) y temperatura minima: \( -2^{\circ} \mathrm{C} \longrightarrow \) Amplitud térmica:
d) Temperatura máxima: \( 0^{\circ} \mathrm{C} \) y temperatura mínima: \( -6^{\circ} \mathrm{C} \longrightarrow \) Amplitud térmica:
d) Temperatura máxima: \( -4^{\circ} \mathrm{C} \) y temperatura mínima: \( -8^{\circ} \mathrm{C} \longrightarrow \) Amplitud térmica:
Q:
Find Domain of the following: \( h(x)=\frac{x}{\ln x} \)
A) \( R \)
B) \( R-\{0\} \)
C) \( ] 0, \infty[ \)
D) \( ] 0,1[\mathrm{U}] 1, \infty[ \)
Q:
Question 7 (1 point)
State the equation of \( f(x) \) if its domain is \( \{x \in R \mid x \neq 0\} \), the \( y \)-intercept does not
exist, and the equation of the horizontal asymptote is \( y=1 \).
Q:
Al 3\% annual interest eompounded menthly, how long will it take to double your money?
Q:
Question
Simplify: \( \sqrt{156 u^{48}} \)
Provide your answer below:
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit