Trigonometry Questions from Dec 03,2024

Browse the Trigonometry Q&A Archive for Dec 03,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
al límite trigonométrico \( \lim _{x \rightarrow 0} \frac{\operatorname{Tan}(2 x)}{6 x} \) es la siguiente. una: \( \begin{aligned} \text { Si } & \operatorname{Cos} \alpha=0,75 \\ & \text { Hallar } \operatorname{Sen} \alpha\end{aligned} \) Un avión viaja entre dos ciudades B y E con ángulos de elevación de \( 35^{\circ} \) y \( 41^{\circ} \), respectivamente. La distancia entre las ciudades es de 1.300 km . a. Halla la distancia del avión a la Ciudad B. b. Halla la distancia del avión a la Ciudad E. \( \sec \theta-\cos \theta \) \( =\frac{1}{\cos \theta}-\cos \theta \) Apply a reciprocal identity Divide out the common factor. Separate the quotient into two terms. 4. A man standing 20 m away from a tower observes the angles of elevation to the top and bottom of a flag-staff standing on the tower as \( 62^{\circ} \) and \( 60^{\circ} \) respectively. Calculate the height of the flagstaff. 5. \( \sec \theta-\cos \theta \) \( =\frac{1}{\cos \theta}-\cos \theta \) Apply a reciprocal identity. \( \sec \theta-\cos \theta \) \( =\square-\cos \theta \) Apply a reciprocal identity. Factor out the greatest common factor. Apply the appropriate even-odd identity. Separate the quotient into two terms. \( \csc x-\csc x \cos ^{2} x=\sin x \) To verify the identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and fransform the expression at each step. \( \begin{array}{cc}\csc x-\csc x \cos ^{2} x \\ =\csc x \\ \text { (Do not simplify.) }\end{array} \) \( \begin{array}{rlrl}\cot (-x) \sin x & =-\cot x \sin x & & \text { Apply the approntrate even-odd identity. } \\ & =-\frac{\cos x}{\sin x} \sin x & \text { Express in ierms of ines and cosines. } \\ & =-\cos x & \end{array} \) Asin \( x \) Apply the appropriate even-odd identity. Separate the quotient into two terms. Express in terms of sines and cosines. Factor out the greatest common factor.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy