Use two or more substitutions to find the following integral. \( \int \frac{\mathrm{dx} \text {. }}{\sqrt{9+\sqrt{6+\mathrm{x}}}} \) (Hint: Begin with \( \mathrm{u}=\sqrt{6+\mathrm{x}} \).) Find du. du \( =\frac{1}{2 \sqrt{\mathrm{x+6}}} \mathrm{dx} \) (Type an exact answer, using radicals as needed.) Rewrite the given integral using this change of variables. \( \int \frac{\mathrm{dx}}{\sqrt{9+\sqrt{6+\mathrm{x}}}}=\int \frac{2 \mathrm{u}}{\sqrt{9+\mathrm{u}}} \) du (Type an exact answer, using radicals as needed.) Find the indefinite integral. \( \int \frac{\mathrm{dx}}{\sqrt{9+\sqrt{6+\mathrm{x}}}}=\square \) (Type an exact answer, using radicals as needed.)
Solución ThothAI de Upstudy
Respuesta rápida
Solución paso a paso
Introduce tu pregunta aquí…