Hamilton Lang
12/23/2023 · Escuela primaria

A sequence has a common ratio of 3/2 and f(5)=81. Which explicit formula represents the sequence?f(x)=24( 3/2 )^(x-1)f(x)=16( 3/2 )^(x-1)f(x)=24( 3/2 )^xf(x)=16( 3/2 )^x

Solución de tutoría real

Respuesta verificada por el tutor

Respuesta rápida

\(f( x) = 16 \left ( \frac { 3} { 2} \right ) ^ { x- 1} \)

 

Solución paso a paso

Given the sequence has a common ratio of \(\frac { 3} { 2} \) and \(f( 5) = 81\), we need to find the explicit formula. The general form of a geometric sequence is \(f( x) = a \cdot r^ { x- 1} \), where \(a\) is the first term and \(r\) is the common ratio.

  1. Let's denote the first term by \(a\).
  2. We know \(f( 5) = 81\), so:
    \[a \cdot \left ( \frac { 3} { 2} \right ) ^ { 5- 1} = 81\]
    \[a \cdot \left ( \frac { 3} { 2} \right ) ^ 4 = 81\]
  3. Calculate \(\left ( \frac { 3} { 2} \right ) ^ 4\):
    \[\left ( \frac { 3} { 2} \right ) ^ 4 = \frac { 81} { 16} \]
  4. Substitute back into the equation:
    \[a \cdot \frac { 81} { 16} = 81\]
  5. Solve for \(a\):
    \[a = 81 \cdot \frac { 16} { 81} = 16\]

Therefore, the explicit formula is:
\[f( x) = 16 \left ( \frac { 3} { 2} \right ) ^ { x- 1} \]

 

Supplemental Knowledge

A geometric sequence is a sequence of numbers where each term after the first is found by multiplying the previous term by a fixed, non-zero number called the common ratio. The explicit formula for a geometric sequence can be written as:
\[f( x) = a \cdot r^ { ( x- 1) } \]
where:

  • \(a\) is the first term of the sequence,
  • \(r\) is the common ratio,
  • \(x\) is the position of the term in the sequence.

Given that \(f( 5) = 81\) and the common ratio \(r = 3/2\), we can use this information to determine the explicit formula.

 

Everyday Examples

Imagine yourself as an investor closely tracking their investments over time. If they grow by an agreed upon percentage every year, a geometric sequence model would help. For instance, if they double in value each year (a common ratio), and you know its current value at any particular moment in time; you could predict its future value using an explicit formula similar to geometric sequences.
This concept allows investors to understand how their investments will grow over time and make informed decisions regarding their financial strategies.

 

Geometric sequences offer valuable insight into a host of real-world phenomena ranging from financial investments to biological development patterns. If you want to master and apply these concepts effectively, UpStudy provides exceptional resources!

UpStudy provides AI-powered problem-solving services, offering step-by-step explanations that allow users to grasp complex mathematical concepts easily. Our platform makes learning math fun!

To further enhance your learning experience, try UpStudy’s Algebra Sequences Calculator! It’s designed to help you quickly find explicit formulas for sequences and understand their behavior over time.

Dive into UpStudy’s live tutor question bank today to deepen your understanding of algebraic sequences!

Revisado y aprobado por el equipo de tutoría de UpStudy
Estudio de ThothAI
Autodesarrollado y en constante mejora
El producto Thoth AI se actualiza y optimiza constantemente.
Cubre todos los temas principales
Capaz de manejar tareas de matemáticas, química, biología, física y más.
Instantáneo y preciso
Proporciona soluciones y orientación inmediatas y precisas.
Probar ahora
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto

Introduce tu pregunta aquí…

Por imagen
Volver a cargar
Archivos subidos
xxxx.png0%
Enviar
📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
  • Acceso completo para chat en PDF, chat en UpStudy, chat de navegación
Básico
  • Limitado Soluciones