Q:
For the function \( f(x)=15+10 x+6 x^{2}+3 x^{3} \), find the following Taylor polynomials
(all centered at \( a=0 \) ).
\( T_{0}(x)=\square \)
\( T_{1}(x)=\square \)
\( T_{2}(x)=\square \)
\( T_{3}(x)=\square \)
\( T_{4}(x)=\square \)
\( T_{118}(x)=\square \)
Q:
TUTON MATA4110/KALKULUS I
1. Jika \( y=3 x^{2}-2 x+5 \), tentukan \( \frac{d y}{d x} \) dengan menggunakan definisi.
Q:
is the the sum rational or irrational ?π +24
Q:
The function \( f(x) \) is approximated near \( x=0 \) by the second degree Taylor polynomial
\[ T_{2}(x)=6+3 x+3 x^{2} \]
Find these values:
\( f(0)=\square \)
\( f^{\prime}(0)=\square \)
\( f^{\prime \prime}(0)=\square \)
Q:
Completely simplify the expression
\( -9 x+3-14 x+12 \)
Answer \( =\square \)
Submit Question
Q:
Which is the most accurate way to estimate \( 15 \% \) of 81 ?
\( \begin{array}{lll}\frac{19}{20} \times 80 & \frac{3}{5} \times 80 & \frac{13}{20} \times 80 \\ \frac{3}{20} \times 80\end{array} \)
Q:
Use the distributive property to simplify the expression:
\[ 6(a+5)= \]
Submit Question
Q:
The holes of the graph of a rational function are determined by finding values of \( x \) such that \( (x-a) \) is a common factor of the nume
\[ g(x)=\frac{(x-7)(x+5)}{(x-6)(x+6)} \]
The factored rational function - -Select-v have any common factors with values that make the denominator zero.
Find any holes of the graph. (If an answer does not exist, enter DNE.)
\( (x, y)= \)
Q:
e un libro de 150 páginas,
arrancas 10 hojas. ¿Cuántas
ojas quedan en el libro?
Q:
Write the following in simplified radical form.
\[ \sqrt[5]{128 v^{9}} \]
Assume that the variable represents a positive real number.
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar