Q:
Find all x -intercepts of the following function. Write your answer or
answers as coordinate points. Be sure to select the appropriate number of
\( x \)-intercepts.
\[ f(x)=\frac{3 x^{2}-x}{x^{2}-3 x-54} \]
Q:
Solve for \( x \) in the logarithmic equation \( 10^{\log \left(10^{24}\right)}=10^{x} \). (1 point)
\( \begin{array}{l}x=10^{24} \\ x=24^{10} \\ x=24 \\ x=10\end{array} \)
Q:
\( = \sqrt { ( \operatorname { Sen } ^ { 2 } x - \operatorname { Cos } ^ { 2 } x ) ( \operatorname { Sen } ^ { 4 } x + \operatorname { Cos } ^ { 4 } x ) + \operatorname { Cos } ^ { 8 } x } \)
Q:
Which of the following is the value of \( \log 10^{20} \) ? (1 point)
\( \frac{1}{2} \)
2
200
20
Q:
A line that includes the points \( (-8, v) \) and \( (-6,-10) \) has a slope of -8 . What is the value of \( v \) ?
Q:
Which of the following logarithmic expressions is undefined? (1 point)
\( 0 \log _{3} 27 \)
\( \log _{3}-9 \)
\( \log _{0.25} 64 \)
\( 0 \log _{2.5} 6.25 \)
Q:
\( 1 \leftarrow \quad \begin{array}{l}\text { A company finds it can produce } 25 \text { heaters for } \$ 6550 \text {, while producing } 30 \text { heaters costs } \$ 7800 \text {. Express the cost, } \\ \text { as a linear function of the number of heaters, } x \text {. Determine the cost to produce } 40 \text { heaters. } \\ \text { Express the cost, } y \text {, as a linear function of the number of heaters, } x \text {. } \\ y=\square \\ \text { (Simplify your answer.) } \\ \text { The cost to produce } 40 \text { heaters is } \$ \square\end{array} \).
Q:
Solve for \( m \)
\[ \begin{array}{l}-8-5 m=-3 m+6 \\ m=\square \\ \text { Submit }\end{array} \]
Q:
Triangles \( \triangle A O B \) and \( \triangle A O C \) have vertices \( A(0,7), B(-1,-2), C(2,-1) \), and \( O(0,0) \). Show that \( m \angle A O B>m \angle A O C \).
Select the correct choice below and fill in the answer boxes within your choice.
(Type an integer or decimal rounded to the nearest thousandth as needed.)
A. Since \( A B=\square \) and \( A C=\square, \overline{A B}>\overline{A C} \), and thus \( m \angle A O B>m \angle A O C \).
B. Since \( A B=\square \) and \( A C=\square, \overline{A B}=\overline{A C} \), and thus \( m \angle A O B>m \angle A O C \).
C. Since \( A B=\square \) and \( A C=\square, \overline{A B}<\overline{A C} \), and thus \( m \angle A O B>m \angle A O C \).
Q:
Rewrite \( 10^{3}=1000 \) as a logarithmic equation. (1 point)
\( \log _{10} 1000=3 \)
\( \log _{10} 3=1000 \)
\( \log _{1000} 3=10 \)
\( \log _{3} 1000=10 \)
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar