Home Math Solver
\log_3 2x=9
error msg
  • Differential
  • Integral
  • Trigonometry
  • Letters
  • Algebra
  • Calculus
  • Trigonometry
  • Matrix

Question

\log_{3}{\left(2x\right)}=9
Solve the equation
x=\frac{19683}{2}
Alternative Form
x=9841.5
Evaluate
\log_{3}{\left(2x\right)}=9
Find the domain
More Steps Hide Steps
Evaluate
2x>0
Rewrite the expression
x>0
\log_{3}{\left(2x\right)}=9,x>0
\text{Convert the logarithm into exponential form using the fact that }\log_{a}{x}=b\text{ is equal to }x=a^{b}
2x=3^{9}
Evaluate the power
2x=19683
Divide both sides
\frac{2x}{2}=\frac{19683}{2}
Divide the numbers
x=\frac{19683}{2}
Check if the solution is in the defined range
x=\frac{19683}{2},x>0
Solution
x=\frac{19683}{2}
Alternative Form
x=9841.5
Show Solutions
Hide Solutions
Graph
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution