Answer
Here are the solutions to the systems of equations:
1. \( x = 6 \), \( y = 4 \)
2. Infinite solutions: \( y = 5 - x \)
3. \( x = 1 \), \( y = 3 \)
4. No solution
5. No solution
6. Infinite solutions: \( y = \frac{3}{2}x + \frac{3}{2} \)
7. No solution
8. Infinite solutions: \( y = -\frac{1}{4}x \)
9. \( x = 2 \), \( y = 2 \)
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3y+6=6x\\x=2y-2\end{array}\right.\)
- step1: Substitute the value of \(x:\)
\(3y+6=6\left(2y-2\right)\)
- step2: Expand the expression:
\(3y+6=12y-12\)
- step3: Move the expression to the left side:
\(3y-12y=-12-6\)
- step4: Add and subtract:
\(-9y=-12-6\)
- step5: Add and subtract:
\(-9y=-18\)
- step6: Change the signs:
\(9y=18\)
- step7: Divide both sides:
\(\frac{9y}{9}=\frac{18}{9}\)
- step8: Divide the numbers:
\(y=2\)
- step9: Substitute the value of \(y:\)
\(x=2\times 2-2\)
- step10: Calculate:
\(x=2\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=2\\y=2\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=2\\y=2\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(2,2\right)\)
Solve the system of equations \( x+y=10;x-y=2 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+y=10\\x-y=2\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=10-y\\x-y=2\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(10-y-y=2\)
- step3: Subtract the terms:
\(10-2y=2\)
- step4: Move the constant to the right side:
\(-2y=2-10\)
- step5: Subtract the numbers:
\(-2y=-8\)
- step6: Change the signs:
\(2y=8\)
- step7: Divide both sides:
\(\frac{2y}{2}=\frac{8}{2}\)
- step8: Divide the numbers:
\(y=4\)
- step9: Substitute the value of \(y:\)
\(x=10-4\)
- step10: Calculate:
\(x=6\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=6\\y=4\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=6\\y=4\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(6,4\right)\)
Solve the system of equations \( 2 x+3 y=11;4 y-2 x=10 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2x+3y=11\\4y-2x=10\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\frac{11-3y}{2}\\4y-2x=10\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(4y-2\times \frac{11-3y}{2}=10\)
- step3: Simplify:
\(7y-11=10\)
- step4: Move the constant to the right side:
\(7y=10+11\)
- step5: Add the numbers:
\(7y=21\)
- step6: Divide both sides:
\(\frac{7y}{7}=\frac{21}{7}\)
- step7: Divide the numbers:
\(y=3\)
- step8: Substitute the value of \(y:\)
\(x=\frac{11-3\times 3}{2}\)
- step9: Calculate:
\(x=1\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=1\\y=3\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=1\\y=3\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(1,3\right)\)
Solve the system of equations \( 3 x+2 y=13;2 x+3 y=18;8 x=7-3 y \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x+2y=13\\2x+3y=18\\8x=7-3y\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\frac{13-2y}{3}\\2x+3y=18\\8x=7-3y\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left\{ \begin{array}{l}2\times \frac{13-2y}{3}+3y=18\\8\times \frac{13-2y}{3}=7-3y\end{array}\right.\)
- step3: Simplify:
\(\left\{ \begin{array}{l}\frac{2\left(13-2y\right)}{3}+3y=18\\\frac{8\left(13-2y\right)}{3}=7-3y\end{array}\right.\)
- step4: Solve the equation:
\(\left\{ \begin{array}{l}y=\frac{28}{5}\\\frac{8\left(13-2y\right)}{3}=7-3y\end{array}\right.\)
- step5: Substitute the value of \(y:\)
\(\frac{8\left(13-2\times \frac{28}{5}\right)}{3}=7-3\times \frac{28}{5}\)
- step6: Simplify:
\(\frac{24}{5}=-\frac{49}{5}\)
- step7: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step8: Rewrite:
\((x, y) \in \varnothing\)
Solve the system of equations \( 3 y-4 x=4;2 y=x;8 x-1=-2 y \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3y-4x=4\\2y=x\\8x-1=-2y\end{array}\right.\)
- step1: Rewrite the expression:
\(\left\{ \begin{array}{l}3y-4x=4\\x=2y\\8x-1=-2y\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left\{ \begin{array}{l}3y-4\times 2y=4\\8\times 2y-1=-2y\end{array}\right.\)
- step3: Simplify:
\(\left\{ \begin{array}{l}-5y=4\\16y-1=-2y\end{array}\right.\)
- step4: Solve the equation:
\(\left\{ \begin{array}{l}y=-\frac{4}{5}\\16y-1=-2y\end{array}\right.\)
- step5: Substitute the value of \(y:\)
\(16\left(-\frac{4}{5}\right)-1=-2\left(-\frac{4}{5}\right)\)
- step6: Simplify:
\(-\frac{69}{5}=\frac{8}{5}\)
- step7: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step8: Rewrite:
\((x, y) \in \varnothing\)
Solve the system of equations \( 8 x=7-3 y;3 x+4 y=3;9 y=-20 x+13;6 x=7-10 y \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}8x=7-3y\\3x+4y=3\\9y=-20x+13\\6x=7-10y\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\frac{7-3y}{8}\\3x+4y=3\\9y=-20x+13\\6x=7-10y\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left\{ \begin{array}{l}3\times \frac{7-3y}{8}+4y=3\\9y=-20\times \frac{7-3y}{8}+13\\6\times \frac{7-3y}{8}=7-10y\end{array}\right.\)
- step3: Simplify:
\(\left\{ \begin{array}{l}\frac{3\left(7-3y\right)}{8}+4y=3\\9y=-\frac{5\left(7-3y\right)}{2}+13\\\frac{3\left(7-3y\right)}{4}=7-10y\end{array}\right.\)
- step4: Solve the equation:
\(\left\{ \begin{array}{l}y=\frac{3}{23}\\9y=-\frac{5\left(7-3y\right)}{2}+13\\\frac{3\left(7-3y\right)}{4}=7-10y\end{array}\right.\)
- step5: Substitute the value of \(y:\)
\(\left\{ \begin{array}{l}9\times \frac{3}{23}=-\frac{5\left(7-3\times \frac{3}{23}\right)}{2}+13\\\frac{3\left(7-3\times \frac{3}{23}\right)}{4}=7-10\times \frac{3}{23}\end{array}\right.\)
- step6: Simplify:
\(\left\{ \begin{array}{l}\frac{27}{23}=-\frac{81}{23}\\\frac{114}{23}=\frac{131}{23}\end{array}\right.\)
- step7: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step8: Rewrite:
\((x, y) \in \varnothing\)
Let's solve the systems of equations step by step based on the provided inputs.
### 1. System:
\[
x + y = 10
\]
\[
x - y = 2
\]
**Solution:**
By solving these equations, we find:
\[
(x, y) = (6, 4)
\]
### 2. System:
\[
x + y = 5
\]
**Solution:**
This is a single equation with infinite solutions. We can express \(y\) in terms of \(x\):
\[
y = 5 - x
\]
### 3. System:
\[
2x + 3y = 11
\]
\[
4y - 2x = 10
\]
**Solution:**
By solving these equations, we find:
\[
(x, y) = (1, 3)
\]
### 4. System:
\[
3x + 2y = 13
\]
\[
2x + 3y = 18
\]
\[
8x = 7 - 3y
\]
**Solution:**
This system has no solution, which can be expressed as:
\[
(x, y) \in \varnothing \quad \text{(No solution)}
\]
### 5. System:
\[
8x = 7 - 3y
\]
\[
3x + 4y = 3
\]
\[
9y = -20x + 13
\]
\[
6x = 7 - 10y
\]
**Solution:**
This system also has no solution:
\[
(x, y) \in \varnothing \quad \text{(No solution)}
\]
### 6. System:
\[
2y = 3x + 3
\]
**Solution:**
This is a single equation with infinite solutions. We can express \(y\) in terms of \(x\):
\[
y = \frac{3}{2}x + \frac{3}{2}
\]
### 7. System:
\[
3y - 4x = 4
\]
\[
2y = x
\]
\[
8x - 1 = -2y
\]
**Solution:**
This system has no solution:
\[
(x, y) \in \varnothing \quad \text{(No solution)}
\]
### 8. System:
\[
4y = -x
\]
**Solution:**
This is a single equation with infinite solutions. We can express \(y\) in terms of \(x\):
\[
y = -\frac{1}{4}x
\]
### 9. System:
\[
3y + 6 = 6x
\]
\[
x = 2y - 2
\]
**Solution:**
By solving these equations, we find:
\[
(x, y) = (2, 2)
\]
### Summary of Solutions:
1. \( (x, y) = (6, 4) \)
2. Infinite solutions: \( y = 5 - x \)
3. \( (x, y) = (1, 3) \)
4. No solution
5. No solution
6. Infinite solutions: \( y = \frac{3}{2}x + \frac{3}{2} \)
7. No solution
8. Infinite solutions: \( y = -\frac{1}{4}x \)
9. \( (x, y) = (2, 2) \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution