Question
upstudy study bank question image url

Despejar variables - Ecuaciones. Tener en cuenta: las reglas o principios. I. Despejar \( x \) ó y en cada caso teniendo en cuenta la ecuación. 1. \( 2^{1} a(2 x-1)=3 \frac{9}{2} a \) 2. \( \frac{36+x}{x}=\frac{4 x^{2}}{36+x} \quad \begin{array}{c}\text { usar regla } \\ \text { generaal } \\ x=-b \pm\end{array} \) 3. \( V_{1}^{2} x^{2}+V_{2} x^{2}=d^{2} \) general \( X=\frac{-b \pm}{b^{2}-4 a c} \) \( 2 a \) 4. \( 5^{2}=x^{2}+4^{2} \) 5. \( \frac{30}{26}=\frac{2 x+\frac{1}{2}}{2 x-1} \)

Ask by Chavez Rojas. in Colombia
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Aquí están las soluciones para despejar \( x \) en cada ecuación: 1. \( x = \frac{19}{8} \) 2. \( x \approx 7.831349 \) 3. \( x = \frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \) o \( x = -\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \) 4. \( x_{1} = -3 \), \( x_{2} = 3 \) 5. \( x = \frac{43}{8} \) o \( x = 5.375 \) Si necesitas más detalles, pregunta.

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{30}{26}=\frac{2x+\frac{1}{2}}{2x-1}\) - step1: Find the domain: \(\frac{30}{26}=\frac{2x+\frac{1}{2}}{2x-1},x\neq \frac{1}{2}\) - step2: Reduce the fraction: \(\frac{15}{13}=\frac{4x+1}{2\left(2x-1\right)}\) - step3: Swap the sides: \(\frac{4x+1}{2\left(2x-1\right)}=\frac{15}{13}\) - step4: Cross multiply: \(\left(4x+1\right)\times 13=2\left(2x-1\right)\times 15\) - step5: Simplify the equation: \(13\left(4x+1\right)=30\left(2x-1\right)\) - step6: Calculate: \(52x+13=30\left(2x-1\right)\) - step7: Calculate: \(52x+13=60x-30\) - step8: Move the expression to the left side: \(52x+13-\left(60x-30\right)=0\) - step9: Calculate: \(-8x+43=0\) - step10: Move the constant to the right side: \(-8x=0-43\) - step11: Remove 0: \(-8x=-43\) - step12: Change the signs: \(8x=43\) - step13: Divide both sides: \(\frac{8x}{8}=\frac{43}{8}\) - step14: Divide the numbers: \(x=\frac{43}{8}\) - step15: Check if the solution is in the defined range: \(x=\frac{43}{8},x\neq \frac{1}{2}\) - step16: Find the intersection: \(x=\frac{43}{8}\) Solve the equation \( \frac{36+x}{x}=\frac{4 x^{2}}{36+x} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{36+x}{x}=\frac{4x^{2}}{36+x}\) - step1: Find the domain: \(\frac{36+x}{x}=\frac{4x^{2}}{36+x},x \in \left(-\infty,-36\right)\cup \left(-36,0\right)\cup \left(0,+\infty\right)\) - step2: Cross multiply: \(\left(36+x\right)\left(36+x\right)=x\times 4x^{2}\) - step3: Simplify the equation: \(\left(36+x\right)^{2}=4x^{3}\) - step4: Expand the expression: \(1296+72x+x^{2}=4x^{3}\) - step5: Move the expression to the left side: \(1296+72x+x^{2}-4x^{3}=0\) - step6: Calculate: \(x\approx 7.831349\) - step7: Check if the solution is in the defined range: \(x\approx 7.831349,x \in \left(-\infty,-36\right)\cup \left(-36,0\right)\cup \left(0,+\infty\right)\) - step8: Find the intersection: \(x\approx 7.831349\) Solve the equation \( 2^{1} a(2 x-1)=3 \frac{9}{2} a \). Solve the equation by following steps: - step0: Solve for \(x\): \(2^{1}a\left(2x-1\right)=3\frac{9}{2}\times a\) - step1: Evaluate the power: \(2a\left(2x-1\right)=\frac{15}{2}a\) - step2: Divide both sides: \(\frac{2a\left(2x-1\right)}{2a}=\frac{\frac{15}{2}a}{2a}\) - step3: Divide the numbers: \(2x-1=\frac{15}{4}\) - step4: Move the constant to the right side: \(2x=\frac{15}{4}+1\) - step5: Add the numbers: \(2x=\frac{19}{4}\) - step6: Multiply by the reciprocal: \(2x\times \frac{1}{2}=\frac{19}{4}\times \frac{1}{2}\) - step7: Multiply: \(x=\frac{19}{8}\) Solve the equation \( 5^{2}=x^{2}+4^{2} \). Solve the quadratic equation by following steps: - step0: Solve using square roots: \(5^{2}=x^{2}+4^{2}\) - step1: Evaluate the power: \(5^{2}=x^{2}+16\) - step2: Swap the sides: \(x^{2}+16=5^{2}\) - step3: Add or subtract both sides: \(x^{2}=9\) - step4: Simplify the expression: \(x=\pm \sqrt{9}\) - step5: Simplify the expression: \(x=\pm 3\) - step6: Separate into possible cases: \(\begin{align}&x=3\\&x=-3\end{align}\) - step7: Rewrite: \(x_{1}=-3,x_{2}=3\) Solve the equation \( V_{1}^{2} x^{2}+V_{2} x^{2}=d^{2} \). Solve the equation by following steps: - step0: Solve for \(x\): \(V_{1}^{2}x^{2}+V_{2}x^{2}=d^{2}\) - step1: Simplify: \(\left(V_{1}^{2}+V_{2}\right)x^{2}=d^{2}\) - step2: Divide both sides: \(\frac{\left(V_{1}^{2}+V_{2}\right)x^{2}}{V_{1}^{2}+V_{2}}=\frac{d^{2}}{V_{1}^{2}+V_{2}}\) - step3: Divide the numbers: \(x^{2}=\frac{d^{2}}{V_{1}^{2}+V_{2}}\) - step4: Simplify the expression: \(x=\pm \sqrt{\frac{d^{2}}{V_{1}^{2}+V_{2}}}\) - step5: Simplify: \(x=\pm \frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}\) - step6: Separate into possible cases: \(\begin{align}&x=\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}\\&x=-\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}\end{align}\) Aquí están las soluciones para despejar \( x \) en cada una de las ecuaciones proporcionadas: 1. **Ecuación:** \( 2^{1} a(2 x-1)=3 \frac{9}{2} a \) **Despeje:** \[ x = \frac{19}{8} \] 2. **Ecuación:** \( \frac{36+x}{x}=\frac{4 x^{2}}{36+x} \) **Despeje:** \[ x \approx 7.831349 \] 3. **Ecuación:** \( V_{1}^{2} x^{2}+V_{2} x^{2}=d^{2} \) **Despeje:** \[ x = \frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \quad \text{o} \quad x = -\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \] 4. **Ecuación:** \( 5^{2}=x^{2}+4^{2} \) **Despeje:** \[ x_{1} = -3, \quad x_{2} = 3 \] 5. **Ecuación:** \( \frac{30}{26}=\frac{2 x+\frac{1}{2}}{2 x-1} \) **Despeje:** \[ x = \frac{43}{8} \quad \text{o} \quad x = 5.375 \] Si necesitas más detalles sobre algún paso específico o más ejemplos, no dudes en preguntar.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Para despejar variables, es fundamental recordar que las operaciones deben aplicarse de manera inversa para cada término. Por ejemplo, si tienes una multipliación, debes dividir; si tienes una suma, debes restar. También es importante mantener la ecuación balanceada: si realizas una operación en un lado, debes hacer lo mismo en el otro. Ahora, al aplicar esto a las ecuaciones, comienza identificando la variable que deseas despejar. Por ejemplo, en la ecuación \( 5^{2}=x^{2}+4^{2} \), puedes restar \( 4^{2} \) de ambos lados, luego despejar \( x^{2} \) y, finalmente, tomar la raíz cuadrada para obtener \( x \). Siempre mantén un orden lógico y realiza cada operación con cuidado. ¡La práctica te convertirá en un experto!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy