Answer
Aquí están las soluciones para despejar \( x \) en cada ecuación:
1. \( x = \frac{19}{8} \)
2. \( x \approx 7.831349 \)
3. \( x = \frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \) o \( x = -\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \)
4. \( x_{1} = -3 \), \( x_{2} = 3 \)
5. \( x = \frac{43}{8} \) o \( x = 5.375 \)
Si necesitas más detalles, pregunta.
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{30}{26}=\frac{2x+\frac{1}{2}}{2x-1}\)
- step1: Find the domain:
\(\frac{30}{26}=\frac{2x+\frac{1}{2}}{2x-1},x\neq \frac{1}{2}\)
- step2: Reduce the fraction:
\(\frac{15}{13}=\frac{4x+1}{2\left(2x-1\right)}\)
- step3: Swap the sides:
\(\frac{4x+1}{2\left(2x-1\right)}=\frac{15}{13}\)
- step4: Cross multiply:
\(\left(4x+1\right)\times 13=2\left(2x-1\right)\times 15\)
- step5: Simplify the equation:
\(13\left(4x+1\right)=30\left(2x-1\right)\)
- step6: Calculate:
\(52x+13=30\left(2x-1\right)\)
- step7: Calculate:
\(52x+13=60x-30\)
- step8: Move the expression to the left side:
\(52x+13-\left(60x-30\right)=0\)
- step9: Calculate:
\(-8x+43=0\)
- step10: Move the constant to the right side:
\(-8x=0-43\)
- step11: Remove 0:
\(-8x=-43\)
- step12: Change the signs:
\(8x=43\)
- step13: Divide both sides:
\(\frac{8x}{8}=\frac{43}{8}\)
- step14: Divide the numbers:
\(x=\frac{43}{8}\)
- step15: Check if the solution is in the defined range:
\(x=\frac{43}{8},x\neq \frac{1}{2}\)
- step16: Find the intersection:
\(x=\frac{43}{8}\)
Solve the equation \( \frac{36+x}{x}=\frac{4 x^{2}}{36+x} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{36+x}{x}=\frac{4x^{2}}{36+x}\)
- step1: Find the domain:
\(\frac{36+x}{x}=\frac{4x^{2}}{36+x},x \in \left(-\infty,-36\right)\cup \left(-36,0\right)\cup \left(0,+\infty\right)\)
- step2: Cross multiply:
\(\left(36+x\right)\left(36+x\right)=x\times 4x^{2}\)
- step3: Simplify the equation:
\(\left(36+x\right)^{2}=4x^{3}\)
- step4: Expand the expression:
\(1296+72x+x^{2}=4x^{3}\)
- step5: Move the expression to the left side:
\(1296+72x+x^{2}-4x^{3}=0\)
- step6: Calculate:
\(x\approx 7.831349\)
- step7: Check if the solution is in the defined range:
\(x\approx 7.831349,x \in \left(-\infty,-36\right)\cup \left(-36,0\right)\cup \left(0,+\infty\right)\)
- step8: Find the intersection:
\(x\approx 7.831349\)
Solve the equation \( 2^{1} a(2 x-1)=3 \frac{9}{2} a \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{1}a\left(2x-1\right)=3\frac{9}{2}\times a\)
- step1: Evaluate the power:
\(2a\left(2x-1\right)=\frac{15}{2}a\)
- step2: Divide both sides:
\(\frac{2a\left(2x-1\right)}{2a}=\frac{\frac{15}{2}a}{2a}\)
- step3: Divide the numbers:
\(2x-1=\frac{15}{4}\)
- step4: Move the constant to the right side:
\(2x=\frac{15}{4}+1\)
- step5: Add the numbers:
\(2x=\frac{19}{4}\)
- step6: Multiply by the reciprocal:
\(2x\times \frac{1}{2}=\frac{19}{4}\times \frac{1}{2}\)
- step7: Multiply:
\(x=\frac{19}{8}\)
Solve the equation \( 5^{2}=x^{2}+4^{2} \).
Solve the quadratic equation by following steps:
- step0: Solve using square roots:
\(5^{2}=x^{2}+4^{2}\)
- step1: Evaluate the power:
\(5^{2}=x^{2}+16\)
- step2: Swap the sides:
\(x^{2}+16=5^{2}\)
- step3: Add or subtract both sides:
\(x^{2}=9\)
- step4: Simplify the expression:
\(x=\pm \sqrt{9}\)
- step5: Simplify the expression:
\(x=\pm 3\)
- step6: Separate into possible cases:
\(\begin{align}&x=3\\&x=-3\end{align}\)
- step7: Rewrite:
\(x_{1}=-3,x_{2}=3\)
Solve the equation \( V_{1}^{2} x^{2}+V_{2} x^{2}=d^{2} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(V_{1}^{2}x^{2}+V_{2}x^{2}=d^{2}\)
- step1: Simplify:
\(\left(V_{1}^{2}+V_{2}\right)x^{2}=d^{2}\)
- step2: Divide both sides:
\(\frac{\left(V_{1}^{2}+V_{2}\right)x^{2}}{V_{1}^{2}+V_{2}}=\frac{d^{2}}{V_{1}^{2}+V_{2}}\)
- step3: Divide the numbers:
\(x^{2}=\frac{d^{2}}{V_{1}^{2}+V_{2}}\)
- step4: Simplify the expression:
\(x=\pm \sqrt{\frac{d^{2}}{V_{1}^{2}+V_{2}}}\)
- step5: Simplify:
\(x=\pm \frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}\\&x=-\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}\end{align}\)
Aquí están las soluciones para despejar \( x \) en cada una de las ecuaciones proporcionadas:
1. **Ecuación:** \( 2^{1} a(2 x-1)=3 \frac{9}{2} a \)
**Despeje:**
\[
x = \frac{19}{8}
\]
2. **Ecuación:** \( \frac{36+x}{x}=\frac{4 x^{2}}{36+x} \)
**Despeje:**
\[
x \approx 7.831349
\]
3. **Ecuación:** \( V_{1}^{2} x^{2}+V_{2} x^{2}=d^{2} \)
**Despeje:**
\[
x = \frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}} \quad \text{o} \quad x = -\frac{d\sqrt{V_{1}^{2}+V_{2}}}{V_{1}^{2}+V_{2}}
\]
4. **Ecuación:** \( 5^{2}=x^{2}+4^{2} \)
**Despeje:**
\[
x_{1} = -3, \quad x_{2} = 3
\]
5. **Ecuación:** \( \frac{30}{26}=\frac{2 x+\frac{1}{2}}{2 x-1} \)
**Despeje:**
\[
x = \frac{43}{8} \quad \text{o} \quad x = 5.375
\]
Si necesitas más detalles sobre algún paso específico o más ejemplos, no dudes en preguntar.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution