Question

5. \( \frac{\sin x}{4}=\cos 80^{\circ} \)

Ask by Bradley Phillips. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solutions for \( x \) are: \[ x = \arcsin(4 \cos 80^\circ) + 2k\pi \quad \text{and} \quad x = \pi - \arcsin(4 \cos 80^\circ) + 2k\pi, \] where \( k \) is any integer.

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{\sin\left(x\right)}{4}=\cos\left(80^{\circ}\right)\) - step1: Multiply both sides: \(\frac{\sin\left(x\right)}{4}\times 4=\cos\left(80^{\circ}\right)\times 4\) - step2: Calculate: \(\sin\left(x\right)=\cos\left(80^{\circ}\right)\times 4\) - step3: Calculate: \(\sin\left(x\right)=4\cos\left(80^{\circ}\right)\) - step4: Use the inverse trigonometric function: \(x=\arcsin\left(4\cos\left(80^{\circ}\right)\right)\) - step5: Calculate: \(\begin{align}&x=\arcsin\left(4\cos\left(80^{\circ}\right)\right)\\&x=-\arcsin\left(4\cos\left(80^{\circ}\right)\right)+\pi \end{align}\) - step6: Add the period: \(\begin{align}&x=\arcsin\left(4\cos\left(80^{\circ}\right)\right)+2k\pi ,k \in \mathbb{Z}\\&x=-\arcsin\left(4\cos\left(80^{\circ}\right)\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step7: Find the union: \(x=\left\{ \begin{array}{l}\arcsin\left(4\cos\left(80^{\circ}\right)\right)+2k\pi \\-\arcsin\left(4\cos\left(80^{\circ}\right)\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\) To solve the equation \[ \frac{\sin x}{4} = \cos 80^{\circ}, \] we can follow these steps: 1. **Isolate \(\sin x\)**: Multiply both sides by 4 to eliminate the fraction: \[ \sin x = 4 \cos 80^{\circ}. \] 2. **Calculate \(\cos 80^{\circ}\)**: We need to find the value of \(\cos 80^{\circ}\). Using a calculator or trigonometric tables, we find: \[ \cos 80^{\circ} \approx 0.1736. \] Therefore, \[ \sin x = 4 \times 0.1736 \approx 0.6944. \] 3. **Find \(x\)**: Now we need to find \(x\) such that \[ \sin x = 0.6944. \] The general solutions for \(\sin x = a\) are given by: \[ x = \arcsin(a) + 2k\pi \quad \text{and} \quad x = \pi - \arcsin(a) + 2k\pi, \] where \(k\) is any integer. 4. **Substituting the value**: Thus, we have: \[ x = \arcsin(0.6944) + 2k\pi \quad \text{and} \quad x = \pi - \arcsin(0.6944) + 2k\pi. \] 5. **Final result**: The solutions can be expressed as: \[ x = \left\{ \begin{array}{l} \arcsin(4 \cos(80^{\circ})) + 2k\pi \\ -\arcsin(4 \cos(80^{\circ})) + \pi + 2k\pi \end{array} \right., \quad k \in \mathbb{Z}. \] This gives us the complete set of solutions for the equation.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the equation \( \frac{\sin x}{4}=\cos 80^{\circ} \), we start by isolating \(\sin x\): \[ \sin x = 4 \cos 80^{\circ} \] Calculating \(\cos 80^{\circ}\), we can use its value, which is approximately \(0.1736\). Therefore, \[ \sin x \approx 4 \times 0.1736 \approx 0.6944 \] Now we can find \(x\) using the inverse sine function: \[ x = \sin^{-1}(0.6944) \] Calculating, \[ x \approx 44.2^{\circ} \] Since the sine function has a periodicity, we also consider: \[ x \approx 180^{\circ} - 44.2^{\circ} \approx 135.8^{\circ} \] Thus, the general solutions accounting for the periodic nature of the sine function can be expressed as: \[ x = 44.2^{\circ} + k \cdot 360^{\circ} \quad \text{or} \quad x = 135.8^{\circ} + k \cdot 360^{\circ}, \quad k \in \mathbb{Z} \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy